
 

1 

 

CRISPR-GPT: LLM Agents for Automated Design of Gene-Editing Experiments 1 
 2 
Yuanhao Qu1,&, Kaixuan Huang2,&, Ming Yin2, Hugo Zhan3, Dyllan Liu3, Di Yin1, Henry C. Cousins4,5, William 3 
A. Johnson1, Xiaotong Wang1, Russ B. Altman4,6, Denny Zhou7, Mengdi Wang2,*, Le Cong1,* 4 
 5 
1 Department of Pathology, Department of Genetics, Cancer Biology Program, Stanford University School of 6 
Medicine, Stanford, CA 94305, USA 7 
2 Center for Statistics and Machine Learning, Department of Electrical and Computer Engineering, Princeton 8 
University, Princeton, NJ 08544, USA 9 
3 Department of Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA 10 
4 Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA 11 
5 Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA 12 
6 Department of Bioengineering, Department of Genetics, Stanford University, Stanford, CA 94305, USA 13 
7 Google DeepMind, Mountain View, CA 94043, USA 14 
 15 
&These authors contributed equally 16 
*Corresponding authors, mengdiw@princeton.edu (M.W.), congle@stanford.edu (L.C.) 17 
 18 

Abstract 19 

Genome engineering technology has revolutionized biomedical research by enabling precise genetic 20 
modifications. However, designing effective gene-editing experiments requires a deep understanding 21 
of both the CRISPR technology and the biological system involved. Meanwhile, despite their 22 
versatility and promise, Large Language Models (LLMs) often lack domain-specific knowledge and 23 
struggle to accurately solve biological design problems. In this work, we present CRISPR-GPT, an 24 
LLM agent system to automate and enhance the CRISPR-based gene-editing design process. 25 
CRISPR-GPT leverages the reasoning capabilities of LLMs for complex task decomposition, 26 
decision-making, and interactive human-AI collaboration. This system is driven by multi-agent 27 
collaboration, and it incorporates domain expertise, retrieval techniques, external tools, and a 28 
specialized LLM fine-tuned with a decade’s worth of open-forum discussions among gene-editing 29 
scientists. CRISPR-GPT assists users in selecting CRISPR systems, experiment planning, designing 30 
gRNAs, choosing delivery methods, drafting protocols, designing assays, and analyzing data. We 31 
showcase the potential of CRISPR-GPT in assisting beginner researchers with gene-editing from 32 
scratch, knocking-out four genes with CRISPR-Cas12a in a human lung adenocarcinoma cell line and 33 
epigenetically activating two genes using CRISPR-dCas9 in human melanoma cell line, both 34 
successful on first attempt. CRISPR-GPT enabled fully AI-guided gene-editing experiment design 35 
across different modalities, validating its effectiveness as an AI co-pilot in genome engineering. 36 
 37 
Large language models (LLMs) have demonstrated exceptional capabilities in language skills and 38 
encapsulate a tremendous amount of world knowledge19–23. Recent research has also enhanced LLMs with 39 
external tools, improving their problem-solving abilities and efficiencies24–26. Moreover, LLMs have also 40 
demonstrated potential as tool makers27 and black-box optimizers28. To this end, researchers have explored 41 
LLM-based specialized models for various scientific domains29,30, particularly for mathematics and chemistry 42 
tasks. ChemCrow31 uses tool-augmented LLM for solving a range of chemistry-related tasks such as 43 
paracetamol synthesis, whereas Coscientist32 integrated automated experimentation, achieving successful 44 
optimization of palladium-catalyzed cross-coupling reaction. LLMs have also shown initial promise in 45 
generating biological protocols, as demonstrated by studies like BioPlanner78. While recent advancements, 46 
such as OpenAI's o1 preview, have improved reasoning abilities in areas like mathematics and coding, 47 
progress in biological tasks remains comparatively limited. This limitation stems from general-purpose LLMs' 48 
lack of in-depth understanding of biology, compounded by the unique challenges of biological experiments, 49 
including the variability of living systems, the noisy nature of biological data, and the highly specialized, less 50 
transferable nature of biological skills and tools. 51 
 52 
Gene editing has transformed biological research and medicine, allowing for precise DNA modifications for 53 
both therapeutic and experimental applications. CRISPR-Cas, the most well-known gene-editing technology, 54 
originated from bacterial immune systems1–9. Its development has led to advanced techniques like CRISPR 55 
activation and interference (CRISPRa/i)12–16, base-editing17,18, and prime-editing10,11, creating a powerful 56 
toolkit for genetic modification and epigenetic modulation. In basic biomedical research, CRISPR gene-57 
editing has become one of the most frequently used laboratory techniques: at the largest non-profit plasmid 58 
DNA repository, Addgene, 8 of the 15 top requested plasmids worldwide were for CRISPR gene-editing73. 59 
On the application side, CRISPR has produced the first permanent cure for Sickle Cell Disease (SCD)74 and 60 
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β-thalassemia75, as well as facilitating plant engineering for sustainable agriculture5. As one of the most 1 
powerful biotechnologies, numerous software and protocols exist for specific gene-editing tasks. Despite 2 
these resources, designing an end-to-end solution—from CRISPR-Cas system selection, gRNA design, off-3 
target evaluation, to delivery and data analysis—remains complex, particularly for newcomers. AI-assisted 4 
tools can simplify gene-editing experiment design, making the technology more accessible and accelerating 5 
scientific and therapeutic discoveries. 6 
             7 

Overview of CRISPR-GPT 8 
 9 
Biological research presents unique challenges due to its complexity and variability. While tool-augmented 10 
LLMs have proven effective in certain tasks, advanced areas of biology such as gene-editing require 11 
specialized LLMs. Such models must integrate accurate domain knowledge and generate experimentally 12 
viable solutions, possessing the intelligence and automation to enable complex decision-making, navigate 13 
less well-defined situations, and perform problem-solving and troubleshooting. 14 
 15 
We introduce CRISPR-GPT, a solution that combines the strengths of LLMs with domain-specific knowledge, 16 
chain of thought reasoning, instruction finetuning, retrieval techniques and tools. CRISPR-GPT is centered 17 
around LLM-powered design and planning agents (Figure 1). This system leverages the reasoning abilities 18 
of general-purpose LLMs and multi-agent collaboration for task decomposition, constructing state machines, 19 
and automated decision-making (Figure 2a). It draws upon expert knowledge from leading practitioners and 20 
peer-reviewed published literatures in gene-editing for retrieval-augmented generation (RAG). 21 
 22 
To make CRISPR-GPT “think” more like a scientist, we augment the system with CRISPR-Llama3, a new 23 
specialized 8B-parameter LLM which we fine-tuned on ten years' worth of scientific discussions among 24 
gene-editing experts around the world (Supp. Note B). This fine-tuned LLM enhances the agent’s problem-25 
solving skills and provides brainstorming second opinions on difficult inquiries. 26 
 27 
CRISPR-GPT has integrated a variety of search and bioinformatics tools, including Google web search, 28 
Primer342, CRISPRitz50 for off-target prediction, CRISPresso2 for next-generation sequencing (NGS) data 29 
analysis. It also leverages public gRNA libraries33–36, published papers and protocols to provide users with 30 
optimized gene-editing strategies (all databases, tools cited in Supp. Table 1).  31 
 32 
CRISPR-GPT supports four major gene-editing modalities and 22 gene-editing experiment tasks (Figure 1, 33 
Supp. Table 1). It offers tunable levels of automation via three modes: Meta, Auto, and QA. They are 34 
designed to accommodate users from novice PhD-level scientist fresh to gene-editing, to domain experts 35 
looking for more efficient, automated solutions for selected tasks (Figure 1). "Meta Mode" is designed for 36 
beginner researchers, guiding them through a sequence of essential tasks from selection of CRISPR 37 
systems, delivery methods, to designing gRNA, assessing off-target efficiency, generating experiment 38 
protocols and data analysis. Throughout this decision-making process, CRISPR-GPT interacts with users at 39 
every step, provides instructions, and seeks clarifications when needed. "Auto Mode'' caters to advanced 40 
researchers and does not adhere to a predefined task order. Users submit a free-style request, and the LLM-41 
planner decomposes this into tasks, manages their interdependence, builds a customized workflow and 42 
executes them automatically. It fills in missing information based on initial inputs and explains its decisions 43 
and thought process, allowing users to monitor and adjust the process. "Q&A Mode" supports users with on-44 
demand scientific inquiries about gene-editing.  45 
 46 
To assess the AI agent’s capabilities to perform gene-editing research, we compiled an evaluation testset, 47 
Gene-editing-Bench, from both public sources and human experts (details in Supp. Note C). This testset 48 
covers a variety of gene-editing tasks (Figure 1). By using the testset, we performed extensive evaluation of 49 
CRISPR-GPT’s capabilities in major gene-editing research tasks, such as experiment planning, delivery 50 
selection, sgRNA design, and experiment troubleshooting. Additionally, we invited human experts to perform 51 
a thorough user experience evaluation of CRISPR-GPT and collected valuable human feedback. 52 
 53 
Further, we implement CRISPR-GPT in real-world wet labs. Using CRISPR-GPT as an AI co-pilot, we 54 
demonstrate a fully AI-guided knockout of four genes—TGFBR1, SNAI1, BAX, and BCL2L1—using 55 
CRISPR-Cas12a in human lung adenocarcinoma cell line, as well as AI-guided CRISPR-dCas9 epigenetic 56 
activation of two genes—NCR3LG1, CEACAM1—in a human melanoma model. All these wet-lab 57 
experiments were carried by junior researchers not familiar with gene-editing. They both succeeded on the 58 
first attempt, confirmed by not only editing efficiencies, but also biologically-relevant phenotypes and protein-59 
level validation, highlighting the potential of LLM-guided biological research. 60 
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 1 
Mindful of the ethical and safety considerations for gene-editing—especially in human applications—we 2 
integrate several safeguards to prevent dual usages and protect user privacy. These include restrictions on 3 
human heritable gene-editing or pathogen engineering, measures to ensure the privacy of user-provided 4 
genetic information, and alerts for potential unintended consequences, reflecting our commitment to 5 
responsible use in alignment with the broader scientific and ethical discourse on gene-editing technologies.  6 

Results 7 

Building an intelligent, interactive scientific AI co-pilot harnessing LLM’s 8 

reasoning abilities 9 

 10 
CRISPR-GPT is a multi-agent, compositional system involving a team of LLM-based agents, including an 11 
LLM Planner Agent, a User-Proxy Agent, Task Executor Agents, and Tool Provider Agents (Figure 2a). 12 
These components are powered by LLMs to interact with one another as well as the human user. We also 13 
refer to the full system as an “agent” to encapsulate the overall functionalities.  14 
 15 
To automate biological experiment design, we view the overall problem as sequential decision-making. This 16 
perspective frames the interaction between the user and the automated system as a series of decision-17 
making steps, each essential for progressing towards the ultimate goal. Take the Auto Mode for example. A 18 
user can initiate the process with a meta-request, for example, “I want to knock out the human TGFBR1 19 
gene in A549 lung cancer cells”. In response, the agent’s LLM planner will analyze the user’s request, 20 
drawing on its extensive internal knowledge base via retrieval techniques. Leveraging the reasoning abilities 21 
of the base LLM, the planner generates a chain-of-thought44 reasoning path and chooses an optimal action 22 
from a set of plausible ones, while following expert-written guidelines. Consequently, the Planner breaks 23 
down the user’s request into a sequence of discrete tasks, for example “CRISPR/Cas system selection” and 24 
“gRNA design for knockout”, while managing inter-dependencies among these tasks.  Each individual task is 25 
solved by an LLM-powered state machine, via the Task Executor, entailing a sequence of states to progress 26 
towards the specific goal. After the meta-task decomposition, the Task Executor will chain the state 27 
machines of the corresponding tasks together into a larger state machine and begin the execution process, 28 
systematically addressing each task in sequence to ensure the experiment’s objectives are met efficiently 29 
and effectively (Figure 2a).  30 
 31 
The agent is responsible for guiding the user throughout the decision-making process via multiple rounds of 32 
textual interactions. At each decision point, the internal state machine presents a "state variable" to the user-33 
proxy agent, which includes the current task description and specifies any necessary input from the user to 34 
proceed. The user-proxy agent then interprets this state and makes informed decisions on behalf of the user. 35 
Concurrently, the user-proxy agent continues to interact with the user and provides her with instructions, 36 
continuously integrating her feedback to ensure alignment with the user's objectives. 37 
 38 
To enhance the LLM with domain knowledge, we enable the CRISPR agent to retrieve and synthesize 39 
information from published protocols, peer-reviewed research papers, expert-written guidelines, and to utilize 40 
external tools and conduct web searches via Tool Provider Agents (Figure 2a). 41 
 42 
For an end-to-end gene-editing workflow, CRISPR-GPT typically constructs a chain of tasks that includes: 43 
selecting the appropriate CRISPR system, recommending delivery methods, designing gRNAs, predicting 44 
off-target effects, selecting experimental protocols, planning validation assays, and performing data analysis 45 
(Figure 2b). The system's modular architecture facilitates easy integration of additional functionalities and 46 
new tools. CRISPR-GPT serves as a prototype LLM-powered AI co-pilot for scientific research, with potential 47 
applications extending beyond gene editing. 48 

CRISPR-GPT automates gene-editing planning and research tasks 49 
 50 
CRISPR-GPT is able to automate gene-editing research via several key functionalities. For each functionality 51 
we discuss the agentic implementation and evaluation results.  52 
 53 
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Experiment Planning: The Task Planner Agent is charged with directing the entire workflow and breaking 1 
down the user’s meta-request into a task chain (Figure 2). While the Planner selects and follows a 2 
predefined workflow in the Meta Mode, it is able to intake free-style user requests and auto-build a 3 
customized workflow in the Auto Mode. For example, a user may only need part of the predesigned workflow 4 
including CRISPR/Cas system selection, delivery method selection, guideRNA design and experimental 5 
protocol selection before the experiment. Then the Task Planner Agent extracts the right information from 6 
the user request and assembles a customized workflow to suit user needs (Figure 3a). To evaluate 7 
CRISPR-GPT’s ability to correctly layout gene-editing tasks and manage inter-task dependence, we 8 
compiled a planning testset, as a part of the Gene-editing-Bench, with user requests and golden answers 9 
curated by human experts. Using this testset, we evaluated CRISPR-GPT in comparison with prompted 10 
general LLMs, showing that CRISPR-GPT outperforms general LLMs in planning gene-editing tasks (Figure 11 
3b). The CRISPR-GPT agent driven by GPT-4o scored over 0.99 in accuracy, precision, recall, F1 score, 12 
and had less than 0.05 in the normalized Levenshtein distance between agent-generated plans and golden 13 
answers (Figure 3b). For extensive description of the testset and evaluation, please see Supp. Note C1. 14 
 15 
Delivery Method Selection: We present and evaluate the delivery agent of CRISPR-GPT (Figure 4a-b). 16 
Delivery is a critical step for all gene-editing experiments. CRISPR-GPT equips LLM with expert-tailored 17 
instructions and external tools to choose delivery methods. Specifically, the agent first tries to understand the 18 
biological system that the user is planning to edit. It extracts keywords for the target cell/tissues/organisms, 19 
performs Google search, and summarizes the results. Then, given its own knowledge and search results, 20 
CRISPR-GPT matches the user case with a major biological category–cell lines, primary cells, in vivo, etc.–21 
which reduces the possible options to a focused set of candidate methods. Next, CRISPR-GPT performs 22 
literature search with user and method-specific keywords, and ranks the candidate methods based on 23 
citation metrics to suggest a primary and a secondary delivery method (Figure 4a). To evaluate the 24 
performance of this module, we compiled test cases including 50 biological systems as a part of the Gene-25 
editing-Bench. For each case, we invited three human experts to score potential delivery options and utilized 26 
those as ground-truth. We then evaluated the output of CRISPR-GPT and baseline models by comparing to 27 
the pre-compiled ground-truth score sheet. We found that CRISPR-GPT outperforms the baseline gpt-4, gpt-28 
3-turbo models (Figure 4b). The agent has a substantial edge on difficult tasks such as those involving hard-29 
to-transfect cell lines and primary cell types. We also noticed that including an additional literature search 30 
step improves the agent’s performance only moderately. More details about the delivery selection evaluation 31 
can be found in Supp. Note C2. 32 
 33 
guideRNA design: Good guide RNA (gRNA) design is crucial for the success of CRISPR experiments. 34 
Various gRNA design tools and softwares, such as CRISPick33-36 and ChopChop79, are available. However, 35 
we believe there are two key challenges in general usage: 1. Choosing a trustworthy source. 2. Difficulty in 36 
quickly identifying gRNAs that suit specific user requirements or experiment contexts, often requiring lengthy 37 
sorting, ranking, or literature review. To address these issues, we utilized pre-designed gRNA tables from 38 
CRISPick, a reputable and widely used tool. We leverage the reasoning capabilities of LLMs to accurately 39 
identify regions of interest, and quickly extract relevant gRNAs. This approach is similar to the recently 40 
proposed "chain-of-tables" methodology77 (Figure 4c, Ext. Data Fig. 1a, Supp. Demo Video 1,2). To 41 
evaluate the ability of CRISPR-GPT to correctly retrieve gRNAs, we compiled a gRNA design test set with 42 
ground truth from human experts (detailed in Supp. Note C3). CRISPR-GPT agent outperforms the baseline 43 
LLMs, in accurately selecting gRNA design actions and configuring the arguments (Figure 4d). 44 
 45 
Further, we picked a real-world test case from a cancer biology study, in which many highly-ranked gRNA 46 
designs did not generate biological phenotypes, even when their editing efficiencies were high76. Instead, the 47 
authors of the study had to design gRNAs manually against Exons encoding important functional domains 48 
within a gene, and Exon-selected gRNAs induced expected cancer-killing effects. We tested CRISPR-GPT 49 
for designing gRNAs targeting BRD4 gene from this study, and compared results with those generated by 50 
CRISPick and CHOPCHOP (Ext. Data Figure 1). CRISPR-GPT was uniquely able to select the key exons, 51 
Exon3-4, within BRD4. In contrast, gRNAs designed by CRISPick or CHOPCHOP would be likely ineffective, 52 
as 7 out of 8 gRNAs mapped to non-essential Exons (Ext. Data Figure 1). Taken together, our results 53 
support the benefit and validity of this module. 54 
 55 
Other Functions and Tools: CRISPR-GPT provides specific suggestions on the choice of the CRISPR 56 
system, experimental and validation protocol selection, by leveraging LLM’s reasoning ability and retrieving 57 
information from an expert-reviewed knowledge base. It also offers automated gRNA off-target prediction, 58 
primer design for validation experiments, and data analysis. In particular, the agent provides fully automated 59 
solutions to run external softwares, such as Primer342, CRISPRitz50 and CRISPResso262 (Supp. Table 1). 60 
We focused on implementing these tools as they are considered gold-standard in respective tasks, and have 61 
been extensively validated in prior work.   62 
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QA Mode with enhanced problem-solving capabilities via fine-tuning LLMs 1 

on scientific discussion 2 

General-purpose LLMs may possess broad knowledge but often lack the deep understanding of science 3 
needed to solve research problems. To enhance the CRISPR-GPT agent's capacity in answering advanced 4 
research questions, we build a QA Mode that synthesizes information from multiple resources, including 5 
published literature, established protocols, and discussions between human scientists, utilizing a 6 
combination of RAG technique, a fine-tuned specialized model and a general LLM (for which we picked gpt-7 
4o). (Methods).  8 
 9 
To enhance the QA mode's capacity to "think" like a scientist for problem solving, we sought to train a 10 
specialized language model using real scientific discussions among domain experts. The fine-tuned model is 11 
used as one of the multiple sources of knowledge for the QA mode (Figure 4e). To this end, we collected 11 12 
years of open-forum discussions from a public Google Discussion Group on CRISPR gene-editing, starting 13 
from 2013 (Supp. Note B). The discussion group involved a diverse cohort of scientists worldwide. This 14 
dataset, comprising approximately 4,000 discussion threads, was curated into an instructional dataset with 15 
over 3,000 question-and-answer pairs (Supp. Note B). Using this dataset, we fine-tuned an 8-billion-16 
parameter LLM based on the Llama3-instruct model59. The fine-tuned model, which we call CRISPR-Llama3, 17 
has improved abilities in gene-editing questions, outperforms the baseline model on basic questions by a 18 
moderate 8% and on real-world research questions by ~20% (Supp. Fig. 1). We integrate this fine-tuned 19 
LLM into the QA Mode as a "brainstorming source", enabling the agent to generate ideas like a human 20 
scientist and provide a second opinion for difficult queries (Figure 4e). 21 
 22 
To assess the performance of the QA Mode, we used the Gene-editing-Bench QA testset (Supp. Note C). 23 
The test questions encompass basic gene-editing knowledge, experimental troubleshooting, CRISPR 24 
application in various biological systems, ethics and safety. We prompted CRISPR-GPT, gpt-3.5-turbo, and 25 
gpt-4o to generate responses to test questions. Three human experts scored the answers in a fully-blinded 26 
setting. The test demonstrated that the QA Mode outperformed baseline LLMs in accuracy, reasoning, and 27 
conciseness, with improvement of 12%, 15%, and 32%, respectively, versus GPT-4o (Figure 4f). Human 28 
evaluators observe that general-purpose LLMs sometimes make factual errors and tend to provide extensive 29 
answers not all relevant to the questions. For example, one question is about solving cell growth issues in an 30 
experiment where a scientist performed Cas9 editing followed by single-cell sorting using MCF-7 cells. For 31 
this question, the QA Mode provided a concise, accurate summary of potential reasons and actionable 32 
solutions. In contrast, GPT-4o responded with a long list of 9 factors/options, but at least 2 of them are not 33 
applicable to MCF-7 cells (Ext. Data Figure 4). This, and other examples (Ext. Data Figures. 5-6) 34 
showcase the advantage of CRISPR-GPT QA Mode. Overall, evaluation results confirmed that the multi-35 
source QA Mode is better at answering advanced research questions about gene-editing. 36 

CRISPR-GPT excels in human-AI collaboration validated by human expert 37 

evaluations 38 
To further evaluate the human user experience of CRISPR-GPT, we assembled a panel of eight gene-39 
editing experts to assess the agents’ performance for both end-to-end experiment designs and individual 40 
tasks. The experts were asked to rate their experiences in four dimensions: Accuracy, Reasoning and 41 
Action, Completeness, and Conciseness (see Supp. Note C for detailed rubrics). CRISPR-GPT 42 
demonstrated improved accuracy and strong capabilities in reasoning and action, whereas general LLMs, 43 
such as GPT-4o, often included errors and were prone to hallucination (Figure 5a,b). 44 
 45 
Highlighted by human evaluators’ observations (Figure 5c), the CRISPR-GPT agent provides users with 46 
more accurate, concise, and well-rounded instructions to execute the planned experiments. The ability of 47 
CRISPR-GPT to perform specialty gene-editing tasks, such as Exon-selected gRNA design, customized off-48 
target prediction, and automated sequencing data analysis, reinforced its advantage versus general-purpose 49 
LLMs. This is confirmed by the task-specific evaluation results (Figure 5b). Despite its strengths, CRISPR-50 
GPT struggled with complex requests and rare biological cases, highlighting areas for improvement 51 
(limitations in Supp. Note D). 52 
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Real-world demonstration in fully AI-guided wet-lab gene-editing 1 

experiments. 2 
To showcase and validate CRISPR-GPT's ability as an AI co-pilot to general biologists, we enlisted two 3 
junior researchers unfamiliar with gene-editing. They used CRISPR-GPT in two real-world experiments: to 4 
design and conduct a multi-gene knockout and an epigenetic editing experiment, respectively, from scratch. 5 
 6 
In the first experiment, the junior researcher conducted gene knockouts in the human A549 lung 7 
adenocarcinoma cell line, targeting four genes involved in tumor survival and metastasis: TGFBR1, SNAI1, 8 
BAX, and BCL2L1 (Figure 6). The experiment was designed from scratch with CRISPR-GPT (Figure 6a). 9 
Based on user-AI interaction, enAsCas12a was selected for its multi-target editing capability and low off-10 
target effects. For delivery, CRISPR-GPT recommended lentiviral transduction for stable Cas and gRNA 11 
expression. The gRNAs for the four target genes were designed through CRISPR-GPT. Furthermore, 12 
CRISPR-GPT provided step-by-step protocols for gRNA cloning, lentivirus production, and viral delivery into 13 
A549 cells. To validate the editing, the researcher followed CRISPR-GPT's NGS protocol, using assay 14 
primers designed via the integrated Primer3 tool. After generating the NGS data, the raw sequencing files 15 
were uploaded into CRISPR-GPT for automated analysis through the CRISPResso2 pipeline. The analysis 16 
reports, sent directly via email, summarized the editing outcomes and showed consistently ~80% high 17 
efficiency across all target genes (Figure 6b, Supp. Demo Video 3, full chat history listed in Supp. Table 2). 18 
To further assess the biological phenotypes of TGFBR1, SNAI1 knockout in A549 cells, the researcher 19 
conducted an Epithelial-mesenchymal transition (EMT) induction experiment by treating A549 cells with 20 
TGFβ (Figure 6c, and Methods). The qPCR results revealed that the knockout A549 cell lines (A549 21 
TGFBR1 KO and A549 SNAI1 KO) showed up to 9-fold reduction in CDH1 expression change, and up to 34-22 
fold reduction in VIM expression change, which are both key marker genes in the EMT process. This 23 
confirms the biological role of TGFBR1 and SNAI1 signaling in driving EMT progression (a crucial driver of 24 
metastasis) in lung cancer cells (Figure 6d). 25 
 26 
In the second experiment, the junior researcher performed epigenetic editing to activate two genes involved 27 
in cancer immunotherapy resistance in a human melanoma model cell line (Figure 6e, full chat history listed 28 
in Supp. Table 2). CRISPR-GPT guides the researcher through the full workflow: identify the most suitable 29 
CRISPR activation system, select an appropriate delivery method for A375 cells, design dCas9 gRNAs 30 
(three gRNAs per gene), and generate protocols for validating editing outcomes. After editing was 31 
completed, measurements of target protein expression level confirmed successful activation of both genes, 32 
with up to 56.5% efficiency for NCR3LG1, and 90.2% efficiency for CEACAM1, when comparing gRNA-33 
edited groups vs. negative control gRNAs (Figure 6f). 34 
 35 
Overall, CRISPR-GPT enabled successful completion of the first set of AI-guided gene-editing experiments. 36 
Interactions between the researchers and LLM-powered agents led to efficient, accurate, and ethically 37 
mindful gene-editing on the first attempt, even by users new to the technique. 38 

Safety and Ethical Concerns 39 
 40 
Mitigation of the risk of dual usages  41 
Technologies like CRISPR-Cas9 pose potential ethical and safety risks, including potential misuse for dual 42 
purposes, which can be exemplified with AI tools63. Altering human genomes raises substantial ethical 43 
concerns, particularly with germline cell and embryo editing. Due to these concerns, such editing is illegal in 44 
the U.S. and many other countries. Additionally, gene-editing technology could be abused to create 45 
bioweapons, such as genetically engineered viruses64. 46 
 47 
To mitigate these risks, we augment CRISPR-GPT with an additional layer of safety mechanism to defend 48 
against malicious dual uses. Following the guidelines given in a moratorium46 on heritable genome editing, 49 
CRISPR-GPT ensures users cannot bypass the step of specifying the organism they are editing. If the target 50 
is human tissue or organs, the system triggers the following steps: (i) Displays a warning note when 51 
proceeding with human gene-editing experiments. (ii) Provides a link to the international moratorium with an 52 
explanatory note. (iii) Asks users to confirm they understand the risks and have read the international 53 
guidelines before proceeding. The agent also checks if the user request involves editing of human germline 54 
cells or dangerous, pathogenic viruses (Supplementary Note D). If such a risk is identified, it will trigger an 55 
error message and stop proceeding (Ext. Data Figure 3 for examples of the risk mitigation tests). 56 
 57 
Protection of user genome data privacy 58 
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Other concerns are related to user data privacy issues, especially when human genome sequence 1 
information might be exchanged by using AI tools. We follow the data privacy and HIPAA privacy rule in 2 
healthcare47. Although genome-scale sequences are fundamentally linked to identities, DNA segments of up 3 
to 20 bp length are considered safe and not able to identify human identity65.  4 
CRISPR-GPT includes functionalities to prevent sharing identifiable private human/patient sequences with 5 
public LLM models. Our solution involves two key measures: (i) The system would never store any 6 
identifiable long genome sequence in the server that would potentially reveal patient private information. (ii)  7 
A filter is implemented to detect any sequence of 20 or more A/T/G/C/U bases in prompts before sending 8 
them to external LLMs. If detected, the agent raises an error with a warning note, asking the user to 9 
manually remove the sequence from the input. This prevents the leakage of sensitive information to external 10 
models and tools (Ext. Data Figure 3). 11 

Discussion 12 
CRISPR-GPT demonstrates the potential of LLMs to automate and enhance biological research and 13 
experiment design. This AI-guided workflow leverages LLM for reasoning, multi-agent collaboration, scientific 14 
discussions for brainstorming, reduces errors, and improves research quality and reproducibility. Despite its 15 
current capabilities, CRISPR-GPT has limitations. For example, the agent system relies on high-quality 16 
instructions and discussion data from human scientists who have deep knowledge about the biology domain. 17 
Such data is hard to collect, creating challenges for further improvements and scaling up. Further, evaluation 18 
of such AI tools is generally challenging due to the need to collect substantial feedback from human 19 
biologists. For another example, the current gRNA design step mainly supports human and mouse targets, 20 
which could be further expanded.  21 
 22 
Looking ahead, the utilities of CRISPR-GPT could be further expanded by connecting to latest advances in 23 
genome/protein foundation models, plasmid design tools, and other machine learning models, to enable 24 
experiment design tasks beyond gene-editing. Additionally, the integration of CRISPR-GPT with automated 25 
laboratory platforms and robotics holds immense promise. By bridging computational design and physical 26 
execution, researchers could leverage the agent's expertise to orchestrate end-to-end automated 27 
experiments, minimizing manual intervention and accelerating the pace of discovery. 28 

  29 
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Methods 1 

 2 
Large Language Model-Powered Autonomous Agent 3 
The CRISPR-GPT consists of the following 4 core components (Figure 1): LLM planner, Tool providers, 4 
Task executors, and the LLM User-Proxy Agent that serve as the interface with users for taking inputs and 5 
communicating outputs. Each component can be viewed as a LLM-powered single agent with relatively 6 
simple functionality, and the overall system functions via multi-agent interaction. 7 
 8 
Task Executor operates as state machines, providing robust decomposition and progress control.  9 
We implement 22 tasks (summarized in Supp. Table 1), in the form of state machines for CRISPR-GPT. The 10 
state machines are responsible for providing sufficient instruction for the current task and guiding the user to 11 
fulfill the decision-making through multiple rounds of textual interactions. Through these state machines, we 12 
manually decompose each task into sub-goals for the task executor. Specifically, each state is responsible 13 
for one particular sub-goal. The transition logic is well-defined so the task executor can properly transit to 14 
another sub-goal based on the current progress. 15 
 16 
In the Meta Mode, the Task Executor follows predefined workflows that support the full pipelines of 4 Meta 17 
Tasks corresponding to major gene-editing experiments. In the Auto Mode, the LLM planner can 18 
automatically generate a customized list of tasks depending on the user’s meta-request; then the Task 19 
Executor would autobuild and execute the workflow, where state machines of the corresponding tasks are 20 
chained together as a bigger state machine to support the entire pipeline.  21 
 22 
Tool Provider connects Task Executor with external APIs 23 
To connect language models with external functionalities37–41, the system needs to (1) analyze the current 24 
situation and judge whether it’s suitable to call an external tool; (2) know what kinds of tools are available 25 
and choose the best from them. Instead of directly exposing the interfaces of the APIs to LLMs, in CRISPR-26 
GPT, we wrap the usage of APIs inside the states and expose more user-friendly and LLM-friendly textual 27 
interfaces through hand-written instructions and responses. In plain words, we are teaching users (human 28 
agents & LLM user-proxy agents) to use the tools. The tools include Google web search, Google Scholar 29 
search, literature retrieval, and bioinformatic tools like Primer342, CRISPRitz50, CRISPResso262. 30 
 31 
LLM Planner automatically plans gene-editing experiments based on the user’s request 32 
Large Language Models (LLMs) such as GPT-4, Gemini, and Claude can serve as the reasoning core of the 33 
LLM-powered agent to solve real-world decision-making problems. We adopt the ReAct43 prompting 34 
technique, where the LLM is prompted to output the chain-of-thought44 reasoning path and the final action 35 
from the plausible action set (Figure 2). To let LLMs perform task decomposition45, we provide a table of the 36 
descriptions of all the tasks as a prompt to the LLM. Based on LLM’s internal knowledge as well as our 37 
manually written descriptions of tasks and instruction of task decomposition, LLM can intelligently analyze 38 
the user’s request and decompose the user’s request into a list of tasks, respecting the dependencies of the 39 
tasks. After the decomposition, the corresponding state machines are chained together to complete all the 40 
tasks. For robustness, we do not allow LLMs to dynamically add/delete new tasks (new state machines) 41 
during the automatic execution. However, we believe this is an important step toward a more intelligent 42 
science AI agent and leave this as future work. 43 
 44 
LLM-User-Proxy Agent automatically interacts with the Task Executor based on the meta request 45 
Central to our system is the LLM user-proxy agent, which acts as an intermediary between the user and a 46 
state machine. This state machine is derived from an initial task decomposition step, effectively breaking 47 
down the gene-editing process into a structured sequence of actions and decisions. At each step in this 48 
sequence, the state machine presents a current state to the LLM-agent. This state encapsulates a 49 
description of the task at hand and specifies any input required from the user to move forward. 50 
The LLM user-proxy agent's role is to interpret the current state and make informed decisions on behalf of 51 
the user. To do this effectively, the agent may draw upon a diverse set of information, including: 52 

● The instruction inherent to the current state, 53 
● The specific request made by the user, 54 
● A history of past interactions within the current task session, 55 
● Results from external computational tools that have been integrated into the system. 56 

This information is synthesized into a prompt for the LLM user-proxy agent, which then uses its capabilities 57 
to determine the most appropriate next action. The format and structure of these prompts were designed to 58 
optimize the decision-making process. Further, user oversight is a critical component of this system. While 59 
the user-proxy agent operates autonomously, the user is not removed from the process. Instead, they are 60 
encouraged to monitor the progression of tasks and interact with the agent. This setup ensures that any 61 
errors or misinterpretations by the agent can be quickly identified and corrected by the user, maintaining the 62 
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accuracy and integrity of the gene-editing experiment design. This approach to automation emphasizes a 1 
collaborative synergy between human expertise and artificial intelligence. By leveraging the LLM agent's 2 
ability to process and act on complex information, we facilitate a more efficient and user-friendly experience 3 
in designing CRISPR gene-editing experiments. The sequential decision-making framework not only 4 
streamlines the task execution process but also ensures that user input remains a cornerstone of experiment 5 
planning and design. 6 
 7 
Delivery Method Selection Agent 8 
Our approach mirrors the thought process of human gene-editing experts to identify the most appropriate 9 
delivery method based on the user’s specific biological system. The workflow is illustrated in Figure 4a. It 10 
begins by instructing the LLM to extract key biological terms from the user’s natural language request. These 11 
terms provide insight into the biological context of the experiment. The LLM is then tasked with accessing 12 
up-to-date information using a Google Search API to gather additional context about the biological system in 13 
the user request. 14 
 15 
Based on the combined information from the user’s request and external data, the LLM categorizes the 16 
system into one of seven major biological categories: 17 

1. Mammalian in vivo 18 

2. Mammalian embryos 19 

3. Mammalian primary cells or stem cells ex vivo 20 

4. Mammalian cell lines with strong evidence of high-efficiency transfection 21 

5. Mammalian cell lines or organoids without strong evidence of high-efficiency transfection 22 

6. Human in vivo or human embryos 23 

7. Bacteria, viruses, and other organisms 24 

These categories encompass the majority of biological systems relevant to CRISPR delivery. For each 25 
category, we curated 1-3 delivery methods based on human experts’ knowledge, which represent the most 26 
commonly used CRISPR  delivery strategies. 27 
 28 
To further tailor the recommendations to the user’s specific scenario, the agent system conducts a Google 29 
Scholar search to identify relevant peer-reviewed literature. The search is guided by the key terms extracted 30 
from the user’s request. From the search results, the top 10 relevant papers are ranked by citation count, 31 
providing a quantitative measure for prioritizing the potential delivery options within each biological category. 32 
 33 
While citation numbers are not a definitive metric for determining the most appropriate delivery method, they 34 
offer a useful reference point. This approach helps to present well-informed recommendations along with 35 
relevant literature to the user.  36 
 37 
gRNA Design Agent 38 

Designing sgRNAs is a critical challenge in CRISPR editing, as it directly influences editing efficiency. 39 
Numerous sgRNA design tools (both web-based and software packages) are currently available, each 40 
following general design principles and utilizing various metrics—such as on-target and off-target prediction 41 
scores, exon number, and cut position—to rank the designed sgRNAs. We identified two major challenges 42 
for users: (1) finding a trustworthy source for sgRNA design and (2) efficiently selecting sgRNAs that meet 43 
their specific requirements without having to assess every individual metric. 44 
 45 
To address these challenges, we utilized predesigned sgRNA tables from CRISPick, a highly reputable and 46 
widely-used pre-designed sgRNA library from the Broad Institute. This resource has been extensively 47 
validated and employed by scientists globally. We harnessed the reasoning and action (ReAct) capabilities 48 
of large language models (LLMs) to process table queries based on user inputs. Our agent performs a series 49 
of actions to process the tables step-by-step to generate the results, akin to a recently published "chain-of-50 
table" methodology77. 51 
 52 
The agent system can choose from four key functions: 53 
 54 

● SELECT: Retrieves rows where the specified column matches the given value. 55 

● BETWEEN: Selects rows where the specified column's values fall between a specified range 56 

(inclusive). 57 

● ORDERBY: Orders the table based on values in a specified column. 58 
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● TOP: Returns the top N rows of the table. 1 

These functions can be expanded in the future, either by human input or through LLM-generated 2 
suggestions. The agent simultaneously extracts relevant parameters from the user’s request and the table, 3 
then uses these functions and parameters to collect and present the pre-designed sgRNAs along with 4 
relevant information. The results are provided to users through a table visualization and a download link. 5 
 6 
Additionally, we developed an optional Exon Suggestion module within the sgRNA design function, currently 7 
applicable only for CRISPR Knockout sgRNA design. It has been reported that sgRNAs targeting non-8 
essential regions of genes may be less effective. For instance, Shi et al.  demonstrated that targeting only 9 
the BD1/BD2 domains effectively disrupted the BRD4 gene function76. We hypothesized that, given the vast 10 
knowledge base of general LLMs, they could suggest important functional domains (exons) for genes of 11 
interest. The LLM was prompted to reason through the functional domains of the user’s target genes and 12 
provide recommendations on potentially relevant exons (see example in Ext. Data Figure 1). This 13 
information was then integrated into the table queries. 14 
 15 
Currently, there aren’t any available sgRNA design tools that could take specific gene function domains into 16 
consideration and we believe this exon suggestion feature provides a valuable reference for the users.  In 17 
the meantime, we acknowledge that the current Exon Suggestion module does have limitations, especially 18 
for genes with fewer studies or limited internet resources. 19 
 20 
QA Mode 21 

General-purpose LLMs do not understand advanced biology well. As detailed in Supp. Note A,  we identified 22 
failure cases with general-purpose LLMs. The limitations are: (1) information hallucination, (2) lack of up-to-23 
date CRISPR knowledge, (3) absence of peer-reviewed sources, and (4) insufficient problem-solving tailored 24 
to user needs. To address these challenges, the QA Mode of CRISPR-GPT involves a multi-source system 25 
for answering advanced biology questions (see Figure 4e). Upon receiving a user request, the QA Mode 26 
synthesize information  from three sources:  27 
 28 

1. A fine-tuned CRISPR-LLama model, using human scientists’ discussion threads from a Google 29 

Discussion Group, which shows improved problem-solving and troubleshooting capabilities over the 30 

baseline model (see Sup. Note B). 31 

2. RAG-based literature retrieval (a Tool Provider agent), which accesses an up-to-date literature 32 

database curated by human CRISPR experts (see Supp. Fig. 3), providing peer-reviewed, 33 

trustworthy sources for the generated answers. 34 

3. General-purpose LLM (for example ChatGPT or LLama). 35 

Extendability of CRISPR-GPT 36 

Given that CRISPR-GPT has a modular multi-agent architecture,  integrating new tools and functions 37 
into the existing system is easy and training-free. To add a new tool/function, the procedure is as 38 
follows: 39 

(1) Tool Wrapping: Develop specific code to encapsulate the tool's functionality within a state machine, 40 
which we call a Tool Provider agent. This wrapper presents user-friendly and LLM-friendly textual 41 
interfaces through carefully crafted instructions and responses. 42 

(2) Meta Mode Integration: If we want to add the tool to be used in the Meta Mode, we add the entry 43 
state of the new state machine to appropriate positions within the relevant predefined workflow.  44 

(3) Auto Mode Integration: Register the entry state of the new tool's state machine in the task 45 
decomposition table. This ensures that during task decomposition, the Planner Agent becomes 46 
aware of the new tool and can incorporate it into its decision-making process. 47 
 48 

Performance Assessment of CRISPR-GPT 49 

Benchmark Dataset 50 

We compile Gene-Editing-Bench, a collection of test questions and answers for evaluating AI tools’ 51 

capabilities for CRISPR experimental design, with a total of 288 unique entries covering four topics:  52 
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1. Gene-editing planning: we compiled a total of 50 test cases and answers curated by consensus from 1 

human gene-editing experts.  2 

2. CRISPR guideRNA design: 50 test cases with pre-compiled answers by human experts.  3 

3. Gene-editing delivery method selection: 50 test cases covering a range of biological systems and 4 

major experiment types. For each test case, we asked human experts to rank the available delivery 5 

method, and report the consensus ranking as answer. 6 

4. Gene-editing QA: 138 questions and answers, filtered for errors or issues, compiled from both public 7 

sources and human experts. 8 

Validation of Individual Gene-editing Agents 9 

Using this benchmark dataset, we evaluated individual functions of the CRISPR-GPT agent system, briefly:  10 

1. Planning evaluation: we generated three batches of subtask lists for each query in the benchmark 11 

dataset using CRISPR-GPT. Performance was assessed by comparing these to groundtruth, 12 

calculating accuracy, precision, recall, and F1 scores. We also evaluated the task ordering by 13 

computing its normalized Levenshtein distance to the groundtruth. For comparison, we tested gpt-4o 14 

and gpt-3.5-turbo models. This approach allowed us to assess the LLM Planners' ability to plan and 15 

order subtasks for various gene-editing requests. 16 

2. Delivery method selection evaluation: For each test case, we generated responses using CRISPR-17 

GPT (with and without literature search function), gpt-3.5-turbo, and gpt-4-turbo, letting them 18 

propose primary and secondary delivery methods. Responses were evaluated against the ground 19 

truth, with the primary method weighted 2 and the secondary method weighted 1. Scores were 20 

summed across each request category, allowing us to assess the models' ability to suggest 21 

appropriate delivery methods across biological systems. 22 

3. guideRNA design evaluation: We used CRISPR-GPT to generate gRNA design function lists and 23 

parameters, comparing these to the ground truth to calculate accuracy in function selection, order, 24 

and parameter specification. For comparison, we also tested gpt-4 and gpt-3.5-turbo with the testset. 25 

This approach allowed us to assess the models' ability to interpret user queries and generate 26 

appropriate gRNA design strategies. 27 

4. QA mode evaluation: For evaluation of the QA mode, we selected 40 questions and prompted 28 

CRISPR-GPT, gpt-3.5-turbo, and gpt-4 to generate responses. Three human experts evaluated 29 

these responses across four aspects in a full-blind set-up. The experts' scores were averaged to 30 

determine each model's final performance, allowing us to assess the models' ability to answer a wide 31 

range of gene-editing questions. 32 

Detailed evaluation procedures for all the above are provided in Supp. Note C. 33 

Human Experience Evaluation 34 

To holistically evaluate user experiences of the CRISPR-GPT, we invited 8 independent CRISPR human 35 

experts to test the agent system via its web surface. Each expert was asked to make one gene-editing 36 

request under the Meta mode and two gene-editing requests under the Auto mode. More details on the 37 

evaluation procedures are given in Supp. Note C. Additionally, we also provide a total of 20 full chat history 38 

demos from these tests in Supp. Data 1 (details listed in Supp. Table 2). 39 

Real-World Applicability of CRISPR-GPT: Wet Lab Demonstrations 40 

To evaluate the real-world applicability of CRISPR-GPT, we conducted two independent wet lab 41 

demonstrations: 42 

1. Beginner Researcher 1: We invited an independent junior PhD scientist, unfamiliar with the CRISPR 43 

field, to perform CRISPR gene-editing experiments using CRISPR-GPT via human-agent 44 
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collaboration. The researcher applied CRISPR-GPT to execute a gene knockout (KO) experiment as 1 

part of a cancer research project. The agent provided step-by-step guidance throughout the process 2 

(Video demo is available in Supplementary video demo 3, and full chat history in Supp. Data 1, 3 

details in Supp. Table 2). The results were validated through next-generation sequencing and 4 

functional assays. 5 

2. Beginner Researcher 2: An undergraduate student, also unfamiliar with the CRISPR field, was 6 

invited to perform gene-editing experiments through collaboration with CRISPR-GPT. The student 7 

implemented CRISPR activation in a cancer immunology research project, with stepwise guidance 8 

provided by the agent (full chat history provided in Supp. Data 1, details in Supp. Table 2). The 9 

results were validated through antibody staining and FACS sorting. 10 

Cell Line and Cell Culture 11 

A375 and A549 cells were cultured in DMEM (high glucose, GlutaMAX; Gibco) supplemented with 10% fetal 12 

bovine serum (FBS; Gemini Bio), 100 U/mL penicillin, and 100 μg/mL streptomycin (Gibco). Cells were 13 

maintained at 37°C in a humidified atmosphere with 5% CO₂. 14 

crRNA Cloning 15 

Cloning of sgRNAs was carried out using BbsI or Esp3I (NEB) through a Golden Gate assembly into a 16 

lentiviral backbone. The constructs were sequence-verified via Sanger sequencing using a U6 sequencing 17 

primer (5’-GACTATCATATGCTTACCGT-3’). 18 

Lentivirus Packaging and Transduction 19 

Lentivirus production was performed by co-transfecting the assembled lentiviral vector with VSV-G envelope 20 

and Delta-Vpr packaging plasmids into HEK-293T cells using PEI transfection reagent (Sigma-Aldrich). 21 

Supernatants were harvested 48 hours post-transfection. A375 and A549 cells were transduced at low 22 

multiplicity of infection (MOI) with 8 μg/mL polybrene using a spin infection method at 1,000 × g for 45 23 

minutes. Twenty-four hours later, cells were selected with 1 μg/mL puromycin to establish stable cell lines. 24 

gDNA Extraction, PCR, and Sequencing 25 

Genomic DNA (gDNA) was extracted from selected cells 7 days post-transfection using QuickExtract DNA 26 

Extraction Solution (Lucigen) as per the manufacturer's instructions. Targeted loci were amplified via PCR 27 

using Phusion Flash High-Fidelity PCR Master Mix (ThermoFisher Scientific) with primers containing Illumina 28 

sequencing adapters. Paired-end reads (150 bp) were generated using the Illumina MiSeq platform. 29 

PCR Primers: 30 

● TGFBR1: Forward: AGATAGAGGGTACTACGTTGAAAGACT, Reverse: 31 

AAAAAAGTCTTTCAACGTAGTACCCTCT 32 

● SNAI1: Forward: AGATCAGTTGAAGGCCTTTCGAGCCTG, Reverse: 33 

AAAACAGGCTCGAAAGGCCTTCAACTG 34 

● BAX: Forward: AGATATCCAGGATCGAGCAGGGCGAAT, Reverse: 35 

AAAAAATTCGCCCTGCTCGATCCTGGAT 36 

● BCL2L1: Forward: AGATACGCACAGTGCCCCGCCGAAGGA, Reverse: 37 

AAAATCCTTCGGCGGGGCACTGTGCGT 38 

TGFβ Treatment 39 

For optimal EMT induction, cells were seeded at a density of 750,000 cells per 100 mm tissue culture plate 40 

and incubated for 24 hours. The medium was then replaced with 2% FBS DMEM for an additional 24 hours. 41 

Cells were subsequently treated with 5 ng/mL TGFβ (R&D, #240-B/CF) in 2% FBS DMEM for 7 days. To 42 

ensure consistent cell density during the treatment, cells were reseeded at the same density every two days. 43 
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qPCR 1 

Total RNA was extracted using the Direct-zol RNA Purification Kit according to the manufacturer's 2 

instructions. cDNA synthesis and qPCR were performed using the Power SYBR™ Green RNA-to-CT™ 1-3 

Step Kit on a BioRad CFX384 system. Gene expression was quantified using specific primers for CDH1 4 

(Forward: CTG AGG ATG GTG TAA GCG ATG, Reverse: GTC TGT CAT GGA AGG TGC TC) and VIM 5 

(Forward: GTG AAT CCA GAT TAG TTT CCC TCA, Reverse: CAA GAC CTG CTC AAT GTT AAG ATG). 6 

Expression levels were normalized to appropriate housekeeping genes. 7 

Flow Cytometry (FACS) Analysis 8 

Flow cytometry was used to assess the expression of NCR3LG1 and CEACAM1. Cells were stained with B7-9 

H6 Monoclonal Antibody (JAM1EW), PE (eBioscience™) for NCR3LG1 and Anti-CD66a/c/e Mouse 10 

Monoclonal Antibody (PE [Phycoerythrin]) [clone: ASL-32] for CEACAM1. Staining was performed following 11 

the manufacturer's guidelines, and data were acquired using a CytoFLEX analyzer. Flow cytometry data 12 

were analyzed using standard software. 13 

 14 
Reporting Summary 15 
Further information on research design is available in the Nature Research Reporting Summary linked to this 16 
article. 17 
 18 
Data availability 19 
The main data supporting the results in this study are available within the paper and its Supplementary 20 
Information. Source data for the figures will be provided with this paper. 21 
 22 
Code availability 23 
Reviewers could log into CRISPR-GPT web interface (www.crispr-gpt.com) via the accounts below to verify 24 
the results described in the manuscript. 25 
 26 
For reviewer accounts, please use emails: “reviewer1@fakemail.com”, “reviewer2@fakemail.com”, … For all 27 
reviewer accounts, the password is: “1qw2”. 28 
 29 
Because of safety concerns, data, code and prompts will not be fully released to the public until the 30 
development of US regulations in the field of artificial intelligence and its scientific applications.  31 

http://www.crispr-gpt.com/
mailto:reviewer1@fakemail.com
mailto:reviewer2@fakemail.com
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Figure and Figure captions 1 
 2 

 3 
 4 
Fig. 1 | Overview of CRISPR-GPT. CRISPR-GPT is an LLM-powered multi-agent system that provides 5 
AI copiloting to human researchers in gene-editing. It supports four primary gene-editing modalities: 6 
knockout, base-editing, prime-editing, epigenetic editing, and offers three user interaction modes—Meta 7 
mode, Auto mode, and QA mode—to streamline the design and planning of experiments. CRISPR-GPT is 8 
equipped with a comprehensive suite of tools and decision-support capabilities to facilitate the design, 9 
planning, and analysis of gene-editing workflows. To measure the capabilities of CRISPR-GPT, we compile a 10 
Gene-editing-Bench of 288 test cases covering various tasks including experimental planning, sgRNA 11 
design, delivery method selection, and more.  12 
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 1 

 2 
 3 
Fig. 2 | CRISPR-GPT adopts a compositional, multi-agent architecture to enable human-AI 4 
collaboration and automated experimental designs. a, The backbone of CRISPR-GPT involves 5 
multi-agent collaboration between four core components: (1) LLM Planner Agent is responsible for 6 
configuring tasks based on the user’s needs. It automatically performs task decomposition based on the 7 
user’s request, the descriptions of the currently supported tasks, and internal knowledge. The state 8 
machines of the selected tasks are chained together to fulfill the user’s request. (2) Task Executor Agent 9 
implements the chain of state machines from the Planner Agent, and is responsible for providing instructions 10 
and feedback, receiving input from User-Proxy Agent, and calling external tools. State machines are central 11 
to the Task Executor, where each state is responsible for one round of interaction with the user. The 12 
instruction is provided to the user first with sufficient information for the current decision-making step and the 13 
required inputs. After receiving the response from the user, it provides output and feedback, where Tool 14 
Providers are potentially called during the execution of the state. Afterward, the state machine transits to the 15 
next state. (3) LLM User-Proxy Agent is responsible for interacting with the Task Executor on behalf of the 16 
user, where the user can monitor the process and provide corrections to the User-Proxy Agent if the 17 
generated content needs modification or improvement. It generates responses to every step of the state 18 
machine on behalf of the user. (4) Tool Providers support diverse external tools and connect to search 19 
engines or databases via API calls. b. Breakdown of individual tasks in a typical CRISPR-GPT workflow for 20 
gene-editing experiments.  21 
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 1 

Fig. 3 | Task decomposition and experiment planning in CRISPR-GPT Auto-mode with 2 
performance evaluation. a, The LLM Planner Agent automatically breaks down the user’s meta-request 3 
to a sequence of tasks. Then it assembles a customized workflow of the chained tasks to meet the user’s 4 
needs. b, Evaluation of the LLM Planner using a gene-editing planning testset. For each test case, we 5 
generate three independent answers from each model and report the averaged scores (see Supp. Note C).  6 
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 1 
 2 
Fig. 4 | CRISPR-GPT automates gene-editing research and experiment tasks. a, Design of 3 
delivery method selection agent in CRISPR-GPT, showing the workflow, example request, and a series of 4 
agent thoughts-actions to identify most suitable delivery methods for the user's needs. b, Evaluation results 5 
of delivery method selection using CRISPR-GPT and baseline models. c, Design of guideRNA design agent 6 
in CRISPR-GPT, showing the workflow, example request, and a series of agent thoughts-actions to select 7 
top-ranked gRNA customized to user’s request. d, Evaluation results of gRNA design using CRISPR-GPT 8 
and baseline models. Models were prompted to generate functions and associated parameters to design 9 
gRNAs requested by the user. e, Design of QA Mode in CRISPR-GPT, showing the workflow, example 10 
request, and a series of agent thoughts-actions to answer gene-editing questions. f, Evaluation of CRISPR-11 
GPT and baseline models for answering gene-editing research questions. Models were prompted to 12 
generate answers, which were anonymized, evaluated by three human experts in a fully blind set-up. Scores 13 
range from 1 (lowest) to 5 (highest). All scores from above were from three independent trials (details on 14 
evaluation in Supp. Note C). 15 
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 1 
 2 
Fig. 5 | CRISPR-GPT outperforms general-purpose LLM for gene-editing research in human 3 
user experiences. a, Human user experience: evaluation of CRISPR-GPT for end-to-end gene-editing 4 
copiloting. Human experts scored performances from 1 (lowest) to 5 (highest). See detailed procedure and 5 
rubrics in Supp. Note C (Full chat history and video demo listed in Supp. Table 2). b, Human user 6 
experience: evaluation results breakdown by major gene-editing tasks. c, User observations on the strengths 7 
and limitations of CRISPR-GPT compared to baseline LLMs. 8 
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 1 
Fig. 6 | Wet-lab demonstrations of CRISPR-GPT in knockout and activation experiments. 2 
a, The full workflow of CRISPR-GPT-guided knockout experiment of TGFBR1, SNAI1, BAX1, and BCL2L1 3 
through multiple rounds of human-AI interaction (TGFBR1 knockout is shown as an example, see Supp. 4 
Demo Video 3 and full chat history listed in Supp. Table 2). b, Editing efficiencies for TGFBR1, SNAI1, 5 
BAX1, and BCL2L1 measured via next-generation sequencing, analyzed using CRISPResso2 and CRISPR-6 
GPT. c, Schematic of the EMT induction process via TGF-β treatment (see Methods). d, Functional 7 
outcomes of TGFBR1 and SNAI1 knockout in A549 cells after EMT induction by TGF-β. qPCR analysis 8 
shows reduced expression changes in EMT marker genes (CDH1, VIM), confirming successful knockouts of 9 
TGFBR1/SNAI1. e, Simplified workflow of a beginner researcher activating NCR3LG1 and CEACAM1 10 
expression through multi-round interactions with CRISPR-GPT (full chat history listed in Supp. Table 2). f, 11 
Editing outcomes of NCR3LG1 and CEACAM1 activation using CRISPR-GPT designed sgRNAs, measured 12 
via flow cytometry (see Methods). **, p<0.01, ***, p<0.001, ****, p<0.0001, one-way ANOVA.  13 
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Extended Data Figure and captions 1 
 2 

 3 
Extended Data Fig. 1 | LLM-powered exon suggestion for guideRNA design in CRISPR-GPT. 4 
a, Workflow of the exon suggestion feature within the guideRNA design module in CRISPR-GPT. 5 
b. Demonstration of the thought and action processes for exon suggestion in response to a real-6 
world user request (additional details in Methods) c. Comparison of gRNA designs with exon 7 
information from different tools (CRISPR-GPT, CRISPick, CHOPCHOP). Notes on the designs are 8 
provided in blue boxes. CRISPick designs used the default combined ranking by on-/off-target 9 
scores based on Azimuth 2.0 algorithm and Cutting Frequency Determination (CFD) scores. 10 
CHOPCHOP design uses the default on-target efficiency ranking based on Doench et al., 2016. d, 11 
Exons and key bromodomains (BD1/BD2) of the BRD4 protein are shown for reference.  12 
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a 1 

 2 

Extended Data Fig. 2 | Example of CRISPR-GPT QA on gene-editing questions, compared to 3 
baseline models (Part 1/3). a, The question was from the gene-editing QA test set (Supp. Note 4 
C). Questions and answers are displayed in blue boxes, with expert notes in yellow boxes. 5 
Evaluations and comments conducted in a fully blinded setting. 6 

  7 
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b 1 

 2 
Extended Data Fig. 2 |  Example of CRISPR-GPT QA on gene-editing questions, compared to 3 
baseline models (Part 2/3). b, Questions and answers are displayed in blue boxes, with human 4 
evaluator notes in yellow boxes. The question was from the gene-editing QA test set (Supp. Note 5 
C). Evaluations and comments conducted in a fully blinded setting. 6 

  7 
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c 1 

 2 
Extended Data Fig. 2 |  Example of CRISPR-GPT QA on gene-editing questions, compared to 3 
baseline models (Part 3/3). c, Questions and answers are displayed in blue boxes, with human 4 
evaluator notes in yellow boxes. The question was from the gene-editing QA test set (Supp. Note 5 
C). Evaluations and comments conducted in a fully blinded setting. 6 

  7 
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 1 
 2 
Extended Data Fig. 5 | Examples of CRISPR-GPT defending against dual usage and ethical, 3 
privacy risks. The agent identifies potential risks related to dual usage risks (top), human 4 
heritable gene-editing and private genetic information leakage (bottom), responds with warning 5 
messages or errors, and stops proceeding.   6 
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Supplementary Tables, Figures and Legends 1 
 2 

 3 
 4 
Supplementary Table. 1 | CRISPR-GPT implements common gene-editing research tasks. 5 

A comprehensive list of 22 unique experiment design tasks that are automated by CRISPR-GPT, with 6 

references to external resources, databases or tools used.  7 

  8 
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 1 
 2 
Supplementary Table. 2 | List of CRISPR-GPT video demo and chat history demos. We provide a 3 

comprehensive collection of demonstrations of CRISPR-GPT in real-world research. The collection includes 4 

3 video demos and 20 full chat history demos. These files are given in the Supp. Data 1.  5 
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 1 

 2 
Supplementary Fig. 1 | Fine-tuning LLM with CRISPR Google Group datasets and evaluations. a. 3 

Word cloud showing the top 2000 keywords from the CRISPR Google Group dataset. b. Number of 4 

discussion threads in the CRISPR Google Group dataset over time, from 2013 to 2023. c. Expert evaluation 5 

of Fine-tuned CRISPR-Llama and baseline models on three types of gene-editing questions: multiple-choice, 6 

basic knowledge, and problem-solving (STAR_QA). The evaluation was conducted on models based on the 7 

open-source Llama3 (8-billion-parameter, instruct version). For multiple-choice questions, each model 8 

generated 10 independent answers per question, and precompiled answers were used for evaluation. For 9 

general knowledge and problem-solving questions, each model generated 2 independent answers per 10 

question. Responses were anonymized and evaluated by three CRISPR experts, who scored based on 11 

accuracy and usefulness. All scores were normalized to the maximum possible score. (See Supp. Notes B 12 

for dataset details, fine-tuning process, and evaluation methodology).  13 
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 1 

Supplementary Fig. 2 | Example responses from the fine-tuned CRISPR-Llama3 and baseline models 2 

on gene-editing questions. Questions and answers are in blue boxes, human evaluator notes are in yellow 3 

boxes. All questions were sourced from the STAR_QA questions in the Gene-editing-bench testset (Supp. 4 

Note C). Evaluations and expert comments were conducted under a fully blinded setting.  5 
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 1 

 2 
 3 
Supplementary Fig. 3 | Statistics of peer-reviewed literatures used in the RAG module of CRISPR-4 

GPT QA Mode. a, Top keyword frequency. b, Distribution of publication years. c, Top journals where the 5 

papers were published. d, Citation counts as of 03/08/24. 6 
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Supplementary Notes 1 
 2 

A. Failure modes of general-purpose LLMs 3 
ChatGPT Version: ChatGPT gpt-4-0613 4 
Claude Version: Claude 3 Opus 5 
  6 

1. Examples of inaccurate information 7 
 8 
Example 1: 9 
Prompt: Which specific base editing system I should use to broadly introduce mutations to the 10 
human EGFR gene? 11 
 12 
GPT4: 13 
If you are looking to induce a spectrum of mutations in the human EGFR gene to study the phenotypic 14 
implications of these mutations, utilizing multiple base editing systems would be beneficial. 15 
1. **Adenine Base Editors (ABEs):** These can be used to induce A-G transitions in your target gene. ABEs 16 
are helpful as they induce minimal bystander mutations and indels compared to cytosine base editors 17 
(CBEs). 18 
2. **Cytosine Base Editors (CBEs):** You can incorporate these when a C to T change (or G to A on the 19 
opposite strand) is desired in your target gene. Examples of CBEs include BE3, Target-AID, and BE4. 20 
3. **Prime Editing:** If more diverse mutations beyond simple transitions are needed, or insertion/deletion 21 
mutations are needed, consider using prime editing. Although more complex, the versatility of prime editing 22 
allows it to create a wider range of mutations without inducing double-strand breaks or relying on homology-23 
directed repair. 24 
To ensure that your mutations are broad, careful design of guide RNAs for each specific location of your 25 
target gene where mutations are required is necessary. These gRNAs should be specific to the location in 26 
the target gene where A-G or C-T substitutions are desired. 27 
However, take note that introducing broad mutations could also increase the possibility of off-target effects, 28 
hence it is crucial to have stringent control of your editing experiment, and thorough validation of the induced 29 
mutations by techniques such as Sanger sequencing or Next-Generation Sequencing (NGS). 30 
As always, bear in mind the ethical considerations and regulations applicable to your region, as well as 31 
potential biosafety issues, especially when working with oncogenes such as EGFR. 32 
 33 
Note: 34 
The answer fails to mention the specific expanded-window/non-specific base editors. It provides irrelevant 35 
information on ABE, CBE and prime editing. 36 
 37 
Claude 3 Opus: 38 
I apologize, but I do not feel comfortable providing specific advice about how to best introduce mutations to 39 
the human EGFR gene. Broadly editing human genes could have very serious safety and ethical implications 40 
that would need extremely careful consideration by experts. If this is for research purposes, I would 41 
recommend consulting with your institution's biosafety committee and ethics review board, as well as 42 
reviewing the latest scientific literature and guidelines on human gene editing. This is a sensitive topic that 43 
requires great caution and oversight. I'm afraid I cannot responsibly advise on the best technical approach 44 
without a lot more context about the goals and safeguards in place. Let me know if there are other topics I 45 
can assist with though! 46 
 47 
Note: 48 
Claude refused to answer the question. 49 
  50 
Example 2: 51 
Prompt: Which one of the delivery methods I should use to deliver CRISPR knockout systems in 52 
HepG2 cell line? 53 
 54 
GPT4: 55 
Lipofection is commonly used to deliver CRISPR knockout systems into HepG2 cells. Lipofectamine 3000 is 56 
a reagent often utilized for this purpose. 57 
Remember to take into account that the transfection conditions might need to be optimized based on the 58 
specific characteristics of your experimental design. Always follow the manufacturer's guidelines related to 59 
the specific CRISPR system being used in order to ensure the highest level of efficiency. 60 
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If for any reason lipofection is not the preferable choice, electroporation or lentiviral transduction could be 1 
other options depending on the specifics of the experiment and resources available. 2 
 3 
Note: 4 
As HepG2 is a well-known hard-to-transfect cell line, GPT4 provides inaccurate information of using 5 
lipofection (lipofectamine) to deliver the CRISPR knockout system as the top choice. 6 
 7 
Claude 3 Opus: 8 
For delivering CRISPR knockout systems into the HepG2 cell line, which is a human liver cancer cell line, 9 
you have several options. Here are a few common delivery methods you could consider:  10 
1. Lipid-based transfection: This method uses lipid-based reagents such as Lipofectamine to package the 11 
CRISPR components (sgRNA and Cas9) and deliver them into the cells. This is a relatively easy and 12 
efficient method for HepG2 cells.  13 
2. Electroporation: This technique uses electrical pulses to create temporary pores in the cell membrane, 14 
allowing the CRISPR components to enter the cells. This method can be highly efficient but may cause more 15 
cell damage compared to other methods.  16 
3. Viral transduction: Lentiviral or adenoviral vectors can be used to package and deliver the CRISPR 17 
components into HepG2 cells. This method can provide high efficiency and stable integration of the CRISPR 18 
system.  19 
4. Nanoparticle-based delivery: Nanoparticles such as gold nanoparticles or lipid nanoparticles can be used 20 
to encapsulate and deliver the CRISPR components. This method can offer targeted delivery and reduced 21 
off-target effects.  22 
When choosing a delivery method, consider factors such as efficiency, cell viability, off-target effects, and the 23 
specific requirements of your experiment. Lipid-based transfection and lentiviral transduction are commonly 24 
used methods for HepG2 cells due to their relatively high efficiency and ease of use. It's important to 25 
optimize the delivery conditions for your specific experiment and conduct proper controls to validate the 26 
efficiency and specificity of the CRISPR knockout. Additionally, ensure that you follow the appropriate 27 
biosafety guidelines and regulations when working with human cell lines and CRISPR systems. 28 
 29 
Note: 30 
As HepG2 is a well-known hard-to-transfect cell line, Claude’s top answer provides inaccurate information for 31 
using lipid transfection to deliver the CRISPR system. 32 
 33 
Example 3: 34 
Prompt: How should I verify the CRISPR knockout of EGFR in the A549 cell line? 35 
 36 
GPT4: 37 
After performing a CRISPR-Cas9 mediated knockout of EGFR in A549 cells, you should confirm the 38 
knockout on a genotypic and phenotypic level. Below are some methods for assessing this: 39 
1. PCR and Sequencing: Extract genomic DNA from the transfected cells and conduct PCR to amplify the 40 
region surrounding the CRISPR target site. Subsequent Sanger sequencing can identify any insertions or 41 
deletions (indels) at the target site. 42 
2. T7 Endonuclease I Assay or Surveyor Nuclease Assay: These mismatch cleavage assays can also be 43 
used to detect the indels introduced by CRISPR-Cas9 activity. 44 
3. Western Blot: To confirm loss of EGFR expression at the protein level, perform a Western blot using an 45 
anti-EGFR antibody. You should observe a lack of or significant reduction in the EGFR band in the CRISPR-46 
treated cells compared to controls. 47 
4. Immunofluorescence: Perform immunofluorescence staining for EGFR. The CRISPR-treated A549 cells 48 
should show lower fluorescence signal compared to control cells. 49 
5. Cell Function Analysis: As the knockout of EGFR can impact EGFR downstream signaling and cell 50 
proliferation, the analysis of cell growth, migration, or signaling changes can provide further evidence of 51 
functional knockout. 52 
6. qRT-PCR: To assess EGFR mRNA expression levels, quantitative real-time PCR can be performed. 53 
7. Next-Generation Sequencing (NGS): For a more detailed understanding of the specific mutations and 54 
possible off-target effects introduced by CRISPR, NGS can be performed. 55 
Always include appropriate controls in your experiment and conduct the experiments in triplicates for 56 
statistical significance. It is generally recommended to use multiple verification methods to validate the 57 
results. 58 
 59 
Note: 60 
The answer provides problematic information on using qRT-PCR to validate the knockout status. It is known 61 
that qRT-PCR is not a reliable technique to assess gene knockout edits generated with a single guide RNA. 62 
 63 
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Claude 3 Opus: 1 
To verify the CRISPR knockout of EGFR in the A549 cell line, you can use several methods to confirm the 2 
successful editing at the DNA, RNA, and protein levels. Here are some common techniques: 1. Genomic 3 
PCR and sequencing:   - Design primers flanking the targeted region of the EGFR gene.   - Extract genomic 4 
DNA from the edited A549 cells.   - Perform PCR amplification of the targeted region.   - Clone the PCR 5 
products into a plasmid vector and sequence individual clones to identify the presence of indels or desired 6 
mutations at the target site.2. T7 Endonuclease I (T7E1) assay or restriction fragment length polymorphism 7 
(RFLP) analysis:   - If the CRISPR editing introduces a restriction site or disrupts an existing one, you can 8 
use RFLP analysis to detect the edited alleles.   - Alternatively, the T7E1 assay can detect mismatches in the 9 
DNA heteroduplexes formed by the wild-type and edited alleles.3. Quantitative RT-PCR (qRT-PCR):   - 10 
Extract RNA from the edited A549 cells and perform reverse transcription to obtain cDNA.   - Design primers 11 
specific to the EGFR gene and perform qRT-PCR to quantify the mRNA expression levels of EGFR in the 12 
edited cells compared to the wild-type control.4. Western blot:   - Extract proteins from the edited A549 cells.   13 
- Perform a western blot using an EGFR-specific antibody to detect the presence or absence of the EGFR 14 
protein in the edited cells compared to the wild-type control.5. Functional assays:   - Depending on the 15 
known functions of EGFR in A549 cells, you can perform relevant functional assays to assess the impact of 16 
EGFR knockout on cell behavior, such as proliferation, migration, or downstream signaling pathways. It's 17 
important to include appropriate controls, such as wild-type A549 cells and cells treated with non-targeting 18 
CRISPR constructs, to validate the specificity of the EGFR knockout. Additionally, repeating the experiments 19 
multiple times and using a combination of the above methods will provide a more comprehensive verification 20 
of the CRISPR knockout. 21 
 22 
Note: 23 
The answer provides problematic information on using qRT-PCR to validate the knockout status. It is known 24 
that qRT-PCR is not a reliable technique to assess gene knockout edits generated with a single guide RNA. 25 
 26 
Example 4: 27 
Prompt: Could you give me a set of sgRNA sequences of Cas9 targeting human EGFR? 28 
 29 
GPT4: 30 
It's important to note that the efficiency and specificity of sgRNA sequences can depend on several factors, 31 
including the particular experimental conditions and target population of cells. Here are a few sgRNA 32 
sequences targeting human EGFR that have been used in published studies: 33 
1. 5'- GTGGAGTGTGTTGAGCTTGG -3' 34 
2. 5'- GCGTGCAGATGAACTTCTCAAGG -3' 35 
3. 5'- GCTGGTCCTGGAGGAGGTCAAGG -3' 36 
4. 5'- CCTGGAGGAGGTCAGTGTGTAGG -3' 37 
5. 5'- GTGTGTTGAGCTTGGAGTTCGGG -3' 38 
These sequences target different exons within human EGFR. Note that your selection from these sequences 39 
should be driven by desired outcomes. Some may need considerations such as possible pre-existing single 40 
nucleotide polymorphisms, the uniqueness of the sequence for the genome, and the efficiency of the 41 
particular sgRNA. 42 
Please also remember that it will be essential to validate the on-target and off-target effects of your selected 43 
sgRNA in your specific experimental context. Additional steps may include sequencing and functional assays 44 
to confirm successful knockout. 45 
There are online tools available such as Benchling, CHOPCHOP, and CRISPOR, which can assist you in 46 
designing sgRNA sequences for your specific needs. 47 
 48 
Note: 49 
The sequences provided by GPT4 did not align to the sequence of human EGFR sequences. This issue can 50 
be readily identified by examining the generated sequences using NCBI's BLAST tool, which aligns target 51 
sequences to the human reference genome and transcriptome. Such hallucinated designs lack utility and 52 
can mislead researchers, potentially leading to wasted resources and time if not properly vetted. 53 
 54 
Claude 3 Opus:  55 
I apologize, but I do not feel comfortable providing specific sgRNA sequences for targeting the human EGFR 56 
gene with Cas9. Designing sgRNAs for gene editing in human cells is a complex process that requires 57 
careful consideration of potential off-target effects and ethical implications. While I can provide general 58 
information about sgRNA design principles, I believe it would be irresponsible for me to offer ready-to-use 59 
sgRNA sequences without fully understanding the context and intended use of the gene editing experiment. 60 
Especially when it comes to editing genes in human cells, there are serious safety and ethical concerns that 61 
need to be thoroughly addressed. If you are conducting research on human gene editing, I strongly 62 
recommend consulting with experts in your field, such as your academic advisors or institutional biosafety 63 
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committee, to ensure that your experimental design is scientifically rigorous and ethically sound. They can 1 
provide guidance on sgRNA design, off-target effect analysis, and the necessary safety precautions and 2 
regulatory compliance. In general, when designing sgRNAs, it's important to consider factors such as target 3 
specificity, potential off-target sites, and the efficiency of the sgRNA-Cas9 complex. Tools like CRISPOR, 4 
CHOPCHOP, or E-CRISP can help with sgRNA design and off-target prediction. However, the ultimate 5 
responsibility lies with the researcher to ensure the appropriateness and safety of the gene editing 6 
experiment. I apologize if this is not the specific answer you were looking for, but I believe it's crucial to 7 
approach human gene editing with the utmost care and responsibility. If you have any other questions or 8 
need further guidance on CRISPR-Cas9 gene editing, please let me know. 9 
 10 
Note: 11 
Claude provided only general information on guideRNA design and some example tools, but without specific 12 
sequence or instructions. 13 
 14 
Example 5: 15 
Prompt: Could you give me the sgRNA sequence for CRISPR activation of mouse TGFBR1 gene? 16 
 17 
GPT4: 18 
To use CRISPRa (CRISPR activation) for gene activation, a series of sgRNAs that target various regions 19 
near the transcription start site of the gene of interest are typically used. Below is a set of TGFBR1 targeting 20 
sgRNA sequences found in the literature. These sgRNA sequences target the promoter of TGFBR1: 21 
1. 5'- GAGTTAGGTTTCCCGTTGCG -3' 22 
2. 5'- CAGGGTGGTGAGGCCATCTA -3' 23 
3. 5'- GCCATCTAGTTCTCTCCGGA -3' 24 
4. 5'- CAGACGTTGGAGGAGTTAGG -3' 25 
5. 5'- TGACCACGGTCGCGCTCTCC -3' 26 
In designing and choosing the most appropriate sgRNA, the use of software and online prediction tools, such 27 
as Benchling, Optimized CRISPR Design, and CHOPCHOP, can be highly beneficial. 28 
Importantly, after performing CRISPRa, it's crucial to verify upregulation of TGFBR1 at both RNA (qRT-PCR) 29 
and protein (Western blot or ELISA) levels, and also monitor any change in cell phenotype. Off-target effects 30 
should also be evaluated. As with any experimental procedure, several control experiments, including a non-31 
targeting sgRNA control, should be included. 32 
 33 
Note: 34 
The sequences provided by GPT4 did not align to the sequence of mouse TGFBR1 sequences or nearby 35 
genomic regions (checked as above using NCBI BLAST tool). Such hallucinated designs lack utility and can 36 
mislead researchers, potentially leading to wasted resources and time if not properly vetted. 37 
 38 
Claude 3 Opus:  39 
Here are a few potential sgRNA sequences for CRISPR activation (CRISPRa) of the mouse TGFBR1 gene: 40 
1. 5'-GCGCGGAGCGCGCGGAGCGGA-3'   Location: Around 100bp upstream of the transcription start site 41 
(TSS) 42 
2. 5'-GCGGCCTGCGGAGCCTCCCGA-3'  Location: Around 200bp upstream of the TSS 43 
3. 5'-ACGGCGCAGGCGCGCAGGCCC-3'   Location: Around 300bp upstream of the TSS 44 
4. 5'-TGGGCCGCTTGCGCGCGGCCG-3'   Location: Around 400bp upstream of the TSS 45 
These sgRNA sequences are designed to target the promoter region of the mouse TGFBR1 gene, which is a 46 
common strategy for CRISPRa. The sequences are derived from the reference mouse genome (mm10) and 47 
are selected based on their proximity to the TSS and minimal potential off-target effects. However, please 48 
note that these sgRNA sequences are provided for informational purposes only and should be further 49 
validated and optimized for your specific experimental setup. It's essential to consider factors such as the 50 
specific cell type, the CRISPRa system being used (e.g., dCas9-VP64, dCas9-SAM), and the efficiency and 51 
specificity of the sgRNAs. Before proceeding with any experiments, I strongly recommend conducting a 52 
thorough literature review, designing appropriate controls, and consulting with experts in your field to ensure 53 
the scientific rigor and ethical soundness of your research. When using these sgRNAs, it's important to 54 
assess their efficacy and specificity through methods such as qRT-PCR, RNA sequencing, or functional 55 
assays. Additionally, off-target effects should be carefully evaluated using bioinformatic tools and 56 
experimental validation. Remember that CRISPRa experiments in mouse cells still require adherence to 57 
institutional guidelines, ethical regulations, and biosafety protocols. Always prioritize the responsible conduct 58 
of research and the welfare of the animals involved. If you have any further questions or need additional 59 
assistance with your research, please don't hesitate to ask. 60 
 61 
Note: 62 
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Claude provided guideRNA sequences that seem to be fake, they do not align to mouse TGFBR1 locus or 1 
nearby regions (checked as above using NCBI BLAST tool). Such hallucinated designs lack utility and can 2 
mislead researchers, potentially leading to wasted resources and time if not properly vetted. 3 
 4 
Example 6: 5 
Prompt: Could you give me sequences of PCR primers to verify knockout of human EGFR using this 6 
guide ATACACCGTGCCGAACGCAC ? 7 
 8 
GPT4: 9 
To design PCR primers for verifying a knockout, you typically need to know the genomic context around your 10 
cut site which is located in the EGFR gene. 11 
The given gRNA sequence (ATACACCGTGCCGAACGCAC) targets human EGFR gene at the site 12 
55,244,314 - 55,244,333 on chromosome 7 according to the Genome Reference Consortium Human Build 13 
38 patch release 13 (GRCh38.p13). 14 
Based on this position, I suggest to use following primer sequences: 15 
Forward primer: CAGGAAGGAAGGAGGAGGAAG 16 
Reverse primer: GCAGCACGAGCTTAGTTAGG 17 
These primers are designed for approximately 200 bp amplicon size and expected to perform reasonably 18 
well under standard PCR conditions. For best results, adjust conditions based on your specific PCR 19 
reagents. 20 
The resulting PCR products should then be analyzed using methods such as Sanger sequencing or Next 21 
generation sequencing (NGS) to verify mutations indicative of knockout. However, please note that any 22 
online provided sequences should be further verified. If possible, consult with a 23 
geneticist/biologist/professional tool before utilization. 24 
 25 
Note: 26 
The primer sequences provided by GPT4 did not align to the sequence of human EGFR locus or regions 27 
nearby (checked by NCBI BLAST against human genome and transcriptome), they appear to be 28 
hallucination / fake sequences. 29 
 30 
Claude 3 Opus: 31 
To design PCR primers for verifying the knockout of human EGFR using the guide RNA sequence 32 
ATACACCGTGCCGAACGCAC, you'll need to consider the specific genomic context of the target region. 33 
Here's a general approach to designing the primers: 34 
1. Identify the genomic sequence of the human EGFR gene and locate the target site of the guide RNA. 35 
2. Design primers that flank the target site, with one primer binding upstream and the other binding 36 
downstream of the expected cut site. The primers should be specific to the human EGFR gene and not to 37 
other genomic regions. 38 
3. Ensure that the primers have appropriate melting temperatures (Tm), GC content, and minimal secondary 39 
structures or self-complementarity. 40 
Here's an example of potential PCR primer sequences to verify the knockout of human EGFR using the 41 
guide RNA sequence ATACACCGTGCCGAACGCAC: 42 
Forward primer: 5'-CTGCTGGGCTTAGGGAACTT-3' 43 
Reverse primer: 5'-AGCCTCCTCCATGACAACAC-3' 44 
These primers are designed to amplify a region of approximately 500-700 base pairs around the target site. 45 
The exact size of the amplicon will depend on the specific location of the guide RNA within the human EGFR 46 
gene. It's important to validate the primers using bioinformatic tools and experimental optimization to ensure 47 
their specificity and efficiency. If you have any further questions or need assistance with the experimental 48 
design or analysis, please don't hesitate to ask. 49 
 50 
Note: 51 
The primer sequences provided by Claude did not align to the sequence of EGFR locus (checked by NCBI 52 
BLAST against human genome and transcriptome). 53 
 54 

2. Examples of incomplete information 55 
  56 
Example 1: 57 
Prompt: How should I knock out human EGFR in my A549 cell line? 58 
 59 
GPT4: 60 
Here are the general steps to knockout the human EGFR gene in A549 cells using the CRISPR-Cas9 61 
system: 62 



 

39 

 

 1. gRNA Design: First, you have to design guide RNAs (gRNAs) that target the EGFR gene. There are 1 
many online tools available to assist you in designing gRNAs with high specificity and efficiency, like the 2 
CRISPOR and the Benchling tools. 3 
2. Cloning: Clone the gRNAs into a plasmid that also expresses the Cas9 nuclease. This plasmid can either 4 
express the gRNA and Cas9 from separate promoters or express a single transcript that includes both the 5 
gRNA and Cas9 sequences. 6 
2. Transfection: Deliver the plasmid containing the gRNA and Cas9 into the A549 cells. This can be achieved 7 
using a lipofection reagent such as Lipofectamine 3000, following the manufacturer's instructions. 8 
3. Verification: After allowing time for the CRISPR-Cas9 system to induce double-strand breaks and errors in 9 
the DNA repair, which will result in insertions or deletions (indels) disrupting the EGFR gene, you have to 10 
verify the knockout. Genomic DNA PCR with subsequent Sanger sequencing or a mismatch detection assay 11 
like T7 endonuclease I or Surveyor nuclease can be used to confirm indels at the target site. 12 
4. Functional Assays: This step involves verification of the knockout at the protein level. Western blotting or 13 
immunostaining against EGFR can be used to confirm reduced or absent protein level. Additionally, you may 14 
wish to determine the effects of the knockout on cell function, which might include effects on EGFR 15 
downstream signaling and cellular processes like proliferation and migration. 16 
5. Validation: Validate the results using multiple clones and repeat the experiments to ensure the observed 17 
results are consistent and reproducible. 18 
Note: It is very important to always include appropriate controls, such as untransfected cells or cells 19 
transfected with a non-targeting gRNA, in your experiments. Remember also to comply with your institutional 20 
or governmental regulations for working with CRISPR-Cas9 technology. 21 
 22 
Note: 23 
The answer is incomplete in multiple ways. 1. It does not tell the users to first select the CRISPR system. 2. 24 
It does not provide users with necessary sgRNA sequences. 3. It does not provide the protocol for the users 25 
to do the cloning and transfection. In addition, it provides repetitive information on verification but not the 26 
details. 27 
 28 
Claude 3 Opus: 29 
I apologize, but I do not feel comfortable providing specific technical guidance on knocking out the EGFR 30 
gene in human A549 cells. Editing genes in human cell lines is a very sensitive area that requires extremely 31 
careful consideration of the ethical implications and potential risks.While CRISPR-based gene editing is a 32 
powerful research tool, directly knocking out a gene as critical as EGFR in human cells raises serious ethical 33 
and safety concerns. EGFR plays essential roles in normal cell growth and development, so eliminating its 34 
function could have unintended and possibly detrimental effects. There are also risks of off-target edits 35 
causing unintended mutations.Any research involving genetic modifications to human cells needs rigorous 36 
scientific justification, institutional oversight, and robust safeguards to mitigate risks. Without knowing more 37 
details about the purpose and context of your proposed experiment, I don't believe it would be responsible 38 
for me to give specific technical instructions.Instead, I would strongly advise consulting with scientific and 39 
ethics experts at your institution, such as your research advisor, institutional biosafety committee, or an IRB. 40 
They can help assess the merits and risks of the research, ensure appropriate safety precautions and 41 
oversight are in place, and provide guidance on the necessary approvals and protocols.I'm happy to further 42 
discuss the general scientific and ethical considerations around human cell line gene editing. But for the 43 
specific technical steps of knocking out EGFR in A549 cells, I believe expert consultation and institutional 44 
review is the most prudent path forward.I appreciate you understanding my position on this sensitive matter. 45 
Let me know if you have any other questions! 46 
 47 
Note: 48 
Claude refused to help with this request. 49 
 50 
Example 2: 51 
Prompt: How should I transfect the CRISPR knockout system into 293FT cells? 52 
 53 
GPT4: 54 
For transfection of 293FT cells with CRISPR knockout systems, lipofection is often used. Below are general 55 
steps: 56 
1. Cell Culture: 293FT cells should be cultured under appropriate conditions (usually DMEM supplemented 57 
with 10% FBS and antibiotics) and should be around 70-80% confluent at the time of transfection. 58 
2. Plasmid DNA Preparation: Prepare your CRISPR plasmids that include Cas9 and your designed sgRNA. 59 
Make sure the plasmid DNA is pure and of high quality. 60 
3. Transfection Using Lipofectamine: For 293FT cells, Lipofectamine 2000 or Lipofectamine 3000 is 61 
commonly used. Prepare the transfection complex by diluting the Lipofectamine reagent and plasmid DNA in 62 
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Opti-MEM and combining them. Incubate the mixture for 5-20 minutes at room temperature to allow complex 1 
formation. 2 
4. Transfection: Remove the growth medium from your cells, replace with fresh medium, and add the 3 
Lipofectamine-DNA complex to the cells. 4 
5. Post-transfection Culture: Incubate the cells at 37°C in a CO2 incubator. Typically, gene editing is allowed 5 
to proceed for 48-72 hours before analysis. 6 
6. Verification: After 48-72 hours, assess the transfection efficiency and gene editing effect. 7 
This is a general protocol and it's important that you optimize the conditions (like the ratio of Lipofectamine to 8 
DNA, incubation time, etc.) based on the specific requirements of your experiment. And always remember to 9 
include appropriate controls in your experiment to validate your results. 10 
Note: Follow all relevant institutional guidelines for genetic manipulation and cell culture to ensure biohazard 11 
safety. 12 
 13 
Note: 14 
The answer is incomplete as it did not provide the quantity of cells/plasmids/Lipofectamine reagents which 15 
are necessary to perform the experiment. 16 
 17 
Claude 3 Opus: 18 
To transfect the CRISPR knockout system into HEK293FT cells, you can use various transfection methods 19 
depending on your experimental setup and available resources. Here are a few common options: 20 
1. Lipid-based transfection reagents:   - Lipofectamine 3000 or Lipofectamine LTX: These are widely used 21 
lipid-based transfection reagents that can efficiently deliver plasmid DNA into HEK293FT cells.   - Follow the 22 
manufacturer's protocol for the specific reagent, optimizing the DNA:lipid ratio and the amount of plasmid 23 
DNA used. 24 
2. Calcium phosphate transfection:   - This is a cost-effective and reliable method for transfecting HEK293FT 25 
cells.   - Prepare a calcium chloride solution containing the plasmid DNA and mix it with a HEPES-buffered 26 
saline solution to form calcium phosphate-DNA precipitates.   - Add the precipitates to the cells and incubate 27 
for 12-16 hours before replacing the medium. 28 
3. Electroporation:   - Electroporation can be highly efficient for transfecting HEK293FT cells, especially 29 
when using larger plasmids or multiple plasmids.   - Resuspend the cells in an appropriate electroporation 30 
buffer and mix with the plasmid DNA.   - Apply an electric pulse using an electroporator with optimized 31 
settings for HEK293FT cells. 32 
4. Cationic polymer-based transfection reagents:   - Reagents such as polyethylenimine (PEI) or FuGENE 33 
HD can be used to transfect HEK293FT cells.   - Follow the manufacturer's guidelines for the DNA:reagent 34 
ratio and the transfection protocol. 35 
Regardless of the transfection method chosen, here are some general tips to optimize the transfection 36 
efficiency and cell viability:- Use high-quality, purified plasmid DNA.- Optimize the DNA amount, transfection 37 
reagent ratio, and cell density for your specific experiment.- Include appropriate controls, such as a positive 38 
control plasmid and a non-targeting control sgRNA.- After transfection, allow sufficient time for the cells to 39 
express the CRISPR components before proceeding with downstream experiments.- Monitor cell viability 40 
and morphology to assess the impact of the transfection process on the cells.It's important to note that the 41 
choice of transfection method may depend on factors such as the size of the plasmids, the number of 42 
plasmids being co-transfected, the desired transfection efficiency, and the downstream applications. If you 43 
have any further questions or need assistance with troubleshooting the transfection process, please don't 44 
hesitate to ask. 45 
 46 
Note: 47 
Claude provided a range of different delivery methods for HEK293 cells, but failed to recognize that HEK293 48 
cells are easy to transfect and thus the proposed method, such as electroporation, is likely not 49 
relevant/helpful. Also there was no detailed protocol. 50 
 51 
Example 3: 52 
Prompt: How should I evaluate the CRISPRa activation efficiency of human EGFR in 293FT cells? 53 
 54 
GPT4: 55 
To evaluate the activation efficiency of CRISPRa (CRISPR activation) of the human EGFR gene in 293FT 56 
cells, you can use several methods: 57 
1. Quantitative RT-PCR (qRT-PCR): This technology can be used to quantify the mRNA level of EGFR. If the 58 
CRISPRa system is working efficiently, you should observe an increase in EGFR mRNA levels compared to 59 
your control group. 60 
2. Western Blot: You can also confirm the protein expression level of EGFR using Western blot after the 61 
gene has been activated. An efficient CRISPRa should result in an increase in EGFR protein levels. 62 



 

41 

 

3. Flow Cytometry or Immunofluorescence: These methods can be used to quantify and visualize the level of 1 
EGFR protein expression at single-cell resolution. 2 
4. Cellular Assays: Depending on the exact function of EGFR in your cells, you could use a variety of cellular 3 
assays (proliferation assays, wound healing assays, etc.) to observe the functional outcomes of the EGFR 4 
gene activation. 5 
5. Next-Generation Sequencing: RNA-seq can be used not only to confirm the overexpression of EGFR but 6 
also to explore the downstream effects of its activation on a transcriptome-wide scale. 7 
6. Off-target Analysis: Whole-genome sequencing or methods like Digenome-seq, GUIDE-seq, or CIRCLE-8 
seq can be used to evaluate potential off-target gene activation by your CRISPRa system. 9 
It's essential to include appropriate controls and perform experiments in replicates to ensure reliable results. 10 
Carry out normalization properly when quantifying the gene expression. Finally, it's recommended to confirm 11 
the activation efficiency with at least two independent methods such as qRT-PCR and Western blot. 12 
 13 
Note: 14 
The answer does not provide detailed information on how to perform the experiment using each of the 15 
methods mentioned. 16 
 17 
Claude 3 Opus: 18 
I apologize, but I don't feel comfortable providing specific guidance on evaluating CRISPRa activation 19 
efficiency of the human EGFR gene in HEK293FT cells. While CRISPR activation is generally considered 20 
lower risk than gene knockout since it does not permanently alter the genome, there are still important 21 
potential safety and ethical issues to consider, especially when it comes to modulating the activity of a gene 22 
as fundamental as EGFR in human cells.EGFR is a critical gene involved in cell growth, proliferation, and 23 
survival. Artificially activating its expression, even transiently, could have unintended biological 24 
consequences that may not be fully predictable. There are also risks of off-target effects on other genes. Any 25 
research proposing to use CRISPRa on human EGFR would require very careful design and robust safety 26 
precautions. Without knowing more specifics about the scientific rationale, experimental safeguards, and 27 
oversight involved in your proposed research, I don't believe it would be responsible for me to outline the key 28 
steps for evaluating CRISPRa efficiency in this context.  Instead, I would strongly recommend discussing 29 
your research plans in detail with scientific experts and oversight committees at your institution, such as your 30 
PI/supervisor, institutional biosafety committee, etc. They can help rigorously evaluate the scientific merits, 31 
ethical considerations, and safety precautions, and provide tailored guidance on the necessary protocols for 32 
responsibly conducting the research.I'm certainly happy to have a thoughtful discussion about the science an 33 
 34 
Note: 35 
Claude refused to provide an answer to the request. 36 
 37 

3. OpenAI-o1-preview preliminary testing 38 
Tested model version: OpenAI o1-preview 39 
 40 
Example: 41 
Prompt: Could you give me a set of sgRNA sequences of Cas9 targeting human EGFR? 42 
 43 
OpenAI-o1-preview: 44 
Certainly! Designing single-guide RNAs (sgRNAs) to target the **EGFR** (Epidermal Growth Factor Receptor) gene 45 
for CRISPR-Cas9-mediated knockout involves selecting sequences that are unique to the gene and minimize off-46 
target effects. Below is a set of sgRNA sequences that target human **EGFR**. Please ensure to validate these 47 
sequences experimentally for efficiency and specificity. 48 
 49 
--- 50 
 51 
### **1. sgRNA Targeting Exon 2** 52 
 53 
- **Sequence (5' to 3'):** `GGGACTCTGGATCCCAGAAC` 54 
- **PAM Sequence:** `AGG` 55 
- **Genomic Location:** Exon 2 of **EGFR** 56 
 57 
**Details:** 58 
 59 
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- **Rationale:** Targeting early exons increases the likelihood of generating a frameshift mutation, leading to a non-1 
functional protein due to nonsense-mediated decay. 2 
- **Note:** This sgRNA targets a conserved region essential for the kinase domain. 3 
 4 
--- 5 
 6 
### **2. sgRNA Targeting Exon 4** 7 
 8 
- **Sequence (5' to 3'):** `GCTGAGGTGACCCTTGTCTT` 9 
- **PAM Sequence:** `GGG` 10 
- **Genomic Location:** Exon 4 of **EGFR** 11 
 12 
**Details:** 13 
 14 
- **Rationale:** Disruption here affects the ligand-binding domain, critical for EGFR activation. 15 
- **Note:** Verify specificity due to potential homologous regions. 16 
 17 
--- 18 
 19 
### **3. sgRNA Targeting Exon 7** 20 
 21 
- **Sequence (5' to 3'):** `GACATGACGGAATTACATCC` 22 
- **PAM Sequence:** `CGG` 23 
- **Genomic Location:** Exon 7 of **EGFR** 24 
 25 
**Details:** 26 
 27 
- **Rationale:** Aiming at this exon can disrupt the dimerization interface, impeding receptor function. 28 
- **Note:** Ensure minimal off-target sites by performing in silico analysis. 29 
 30 
--- 31 
 32 
### **4. sgRNA Targeting Exon 12** 33 
 34 
- **Sequence (5' to 3'):** `GGAGAACTGCCAGAAACTGC` 35 
- **PAM Sequence:** `TGG` 36 
- **Genomic Location:** Exon 12 of **EGFR** 37 
 38 
**Details:** 39 
 40 
- **Rationale:** This region encodes part of the ATP-binding site; mutations here can abolish kinase activity. 41 
- **Note:** Suitable for studies focusing on kinase domain disruption. 42 
 43 
--- 44 
 45 
### **5. sgRNA Targeting Exon 20** 46 
 47 
- **Sequence (5' to 3'):** `GCTGGACCCACTGCTTGTGA` 48 
- **PAM Sequence:** `AGG` 49 
- **Genomic Location:** Exon 20 of **EGFR** 50 
 51 
**Details:** 52 
 53 
- **Rationale:** Exon 20 contains common mutation sites; targeting here can help study resistance mechanisms. 54 
- **Note:** Particularly relevant for cancer research involving EGFR mutations. 55 
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 1 
--- 2 
 3 
## **Important Considerations** 4 
 5 
### **Off-Target Analysis** 6 
 7 
- **Use Bioinformatics Tools:** 8 
  - **CRISPOR**: [http://crispor.tefor.net](http://crispor.tefor.net) 9 
  - **Benchling**: [https://benchling.com](https://benchling.com) 10 
  - **CHOPCHOP**: [https://chopchop.cbu.uib.no](https://chopchop.cbu.uib.no) 11 
- **Purpose:** Assess potential off-target sites in the genome to minimize unintended gene editing. 12 
- **Action:** Input the sgRNA sequences into these tools to obtain off-target predictions and optimize designs. 13 
 14 
### **Validation of sgRNAs** 15 
 16 
- **Efficiency Testing:** 17 
  - Perform **in vitro cleavage assays** to test Cas9 activity with your sgRNAs. 18 
  - Use **T7 Endonuclease I assays** or **Surveyor assays** to detect indels in transfected cells. 19 
- **Clonal Isolation:** 20 
  - Single-cell clone edited cells to obtain homogenous populations. 21 
  - Sequence clones to confirm biallelic knockouts. 22 
 23 
### **Experimental Controls** 24 
 25 
- **Negative Control:** 26 
  - Use a non-targeting sgRNA sequence (scrambled sequence) to assess background effects. 27 
- **Positive Control:** 28 
  - Include an sgRNA targeting a gene with a well-characterized phenotype upon knockout. 29 
 30 
### **Delivery Methods** 31 
 32 
- **Transfection:** 33 

  - Use lipid-based transfection agents like **Lipofectamine™ 3000** for plasmid delivery. 34 

- **Electroporation:** 35 
  - Utilize nucleofection for delivering Cas9-sgRNA ribonucleoprotein complexes. 36 
- **Viral Vectors:** 37 
  - Consider lentiviral delivery for stable expression, especially if working with difficult-to-transfect cells. 38 
 39 
### **Ethical and Safety Considerations** 40 
 41 
- **Biosafety:** 42 
  - Follow institutional guidelines for genetic manipulation experiments. 43 
- **Ethical Approval:** 44 
  - Obtain necessary approvals if working with human-derived cell lines or genetic material. 45 
 46 
--- 47 
 48 
## **Steps for Using sgRNAs in Your Experiment** 49 
 50 
1. **Design Confirmation:** 51 
   - Verify the sgRNA sequences align correctly with the **EGFR** gene using the latest human genome assembly 52 
(e.g., GRCh38/hg38). 53 
 54 
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2. **Synthesize sgRNAs:** 1 
   - Order chemically synthesized sgRNAs or generate them via in vitro transcription. 2 
 3 
3. **Prepare Cas9 Components:** 4 
   - Choose between plasmid-based Cas9 expression or use Cas9 protein for RNP complexes. 5 
 6 
4. **Transfection/Transduction:** 7 
   - Deliver the sgRNA-Cas9 system into **A549** cells using the chosen method. 8 
 9 
5. **Validation:** 10 
   - After allowing time for gene editing, extract genomic DNA to assess indel formation. 11 
   - Perform mRNA and protein analyses to confirm the knockout at multiple levels. 12 
 13 
--- 14 
 15 
## **Additional Resources** 16 
 17 
- **Protocol References:** 18 
  - **Ran, F. A., et al.** (2013). *Genome engineering using the CRISPR-Cas9 system*. **Nature Protocols**, 8(11), 19 
2281–2308. 20 
  - **Sanjana, N. E., et al.** (2014). *Improved vectors and genome-wide libraries for CRISPR screening*. **Nature 21 
Methods**, 11(8), 783–784. 22 
 23 
- **CRISPR Guides and Tutorials:** 24 
  - **Addgene's CRISPR Resources**: [https://www.addgene.org/crispr/](https://www.addgene.org/crispr/) 25 
  - **Zhang Lab's CRISPR Page**: [https://zlab.bio/guide-design-resources](https://zlab.bio/guide-design-resources) 26 
 27 
--- 28 
 29 
## **Disclaimer** 30 
 31 
- The sgRNA sequences provided are examples and should be validated in your specific experimental context. 32 
- It's crucial to perform comprehensive off-target analyses and functional validations. 33 
- Collaboration with experienced colleagues or core facilities is recommended for complex genome editing projects. 34 
 35 
--- 36 
 37 
If you need assistance with designing custom sgRNAs tailored to your experimental conditions or have further 38 
questions about the CRISPR-Cas9 system, feel free to ask! 39 
 40 
Note: The o1-preview-designed guideRNAs, while all wrong and likely from hallucination (see below), were 41 
provided to the user with confidence. The clear formatting, and inclusion of specific, helpful information such as: 42 
PAM Sequence, Genomic Location, Exon number, Rationale of design including prediction of high on-target or 43 
low off-target of the designed sequence, would easily lead users to believe these o1-preview generated sequences 44 
are bona fide guideRNAs, ideal for targeting human EGFR. Nonetheless, upon searching using tools like UCSC 45 
BLAT or NCBI BLAST, the suggested guideRNA sequences do not match any part of the human genome. Result 46 
below is for checking all 5 guideRNAs from o1-preview model using the UCSC BLAT tool, showing no match 47 
to human genome (input on the left, output on the right): 48 
 49 
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B. Instruction fine-tuning Llama3-8B on Google Group Data 1 
 2 
Source:  3 
An open, public discussion forum “Genome Engineering using CRISPR/Cas Systems.” 4 
 5 
Description: 6 
The dataset, compiled from January 2013 to December 2023, originates from an open-access public 7 
discussion forum titled “Genome Engineering using CRISPR/Cas Systems,” initially established by the Feng 8 
Zhang lab at the Broad Institute of MIT and Harvard. This forum served as a dynamic, crowd-sourced Q&A 9 
platform where scientists worldwide could post questions about CRISPR gene-editing tools and laboratory 10 
practices. Over 11 years, it amassed a wealth of inquiries and expert responses, culminating in 11 
approximately 4,000 discussion threads. Due to spam issues, the forum was discontinued in December 12 
2023. The entire dataset consists of curated question-and-answer pairs derived from these discussions. The 13 
dataset reflects contributions from domain experts and various career-stage scientists, enhancing its 14 
reliability through community engagement and peer review. This dataset offers valuable insights into gene-15 
editing technology, experiment design, and data analysis, facilitating the development of LLM-based Iagents 16 
and advancing scientific research. 17 
 18 

1. Data Processing 19 
The raw dataset, exported in .mbox, is parsed and converted into DataFrame format using Pandas, where 20 
each row corresponds to an email thread identified by an unique thread ID. Each unique email thread is 21 
individually pre-processed by OpenAI’s GPT-4 Turbo model and reformatted for the purpose of fine-tuning. 22 
The model is tasked with extracting Q&A pairs by interpreting the textual content of each thread. The model 23 
is prompted to process the current email thread and identify scientific and research related questions and 24 
answers (Q&A Pairs). Because certain Q&As are specific and context-driven, the model is prompted to use 25 
the entire thread to provide a “context” field for each Q&A Pair. To minimize hallucination, the model is asked 26 
to identify the person who asked the question and the person who provided the answer. It finally outputs 27 
structured data with the following format: {question, answer, context, questionBy, AnswerBy}. Each output is 28 
added to a list that’s mapped to the unique identifier of the current thread for future quality assurance. The 29 
dataset is anonymized after processing. We call the curated dataset FinalQA. 30 
 31 

2. Examples 32 
{ 33 
        "question": "Can someone please explain why maintaining coverage is important in cells post-sorting?", 34 
        "answer": "You want to keep the unsorted library at the coverage that you transduced the cells at - 35 
450x. But when you sort, you will get a smaller sample of this library, and this would be the new number that 36 
you should keep these sorted pools at. E.g. if you get 5 million cells from top and bottom sorts, then keep 37 
these pools at 5 million cells or higher. Any time you go below the original coverage level - whether the 38 
original transduction or the sorted pools - then you will lose coverage.", 39 
        "context": "PersonA and PersonB are discussing the significance of maintaining coverage levels in cell 40 
libraries post-FACS sorting to ensure the reliability of their experimental data in CRISPR/Cas genome 41 
engineering." 42 
} 43 
{ 44 
        "question": "Should I be worried about the number of cells I get out of the FACS instrument and any tips 45 
on how to ensure adequate coverage?", 46 
        "answer": "You want to keep the unsorted library at the coverage that you transduced the cells at - 47 
450x. But when you sort, you will get a smaller sample of this library, and this would be the new number that 48 
you should keep these sorted pools at. E.g. if you get 5 million cells from top and bottom sorts, then keep 49 
these pools at 5 million cells or higher. Any time you go below the original coverage level - whether the 50 
original transduction or the sorted pools - then you will lose coverage.", 51 
        "context": "During a discussion on CRISPR/Cas genome engineering techniques, PersonA seeks 52 
advice from PersonB about the potential issues and strategies for maintaining adequate coverage after cell 53 
sorting to avoid data variability." 54 
} 55 
 56 

3. General Stats 57 
Total Number of Emails:  12231 58 
Total Number of Threads: 3843 59 
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Number of People in the Group: 6914 members (at the time of closure) 1 
Number of Q&A Pairs Identified: ~3000 2 
TimeFrame: 2013 – 2023 3 
 4 

4. Detailed Stats  5 
We further compute the top 2000 Keyword frequency for the Google Group dataset. The top frequency 6 
words are: 7 

● “Genome Engineering” 8 
● “Cas System” 9 
● “using CRISPR” 10 
● “CRISPR Ca” 11 
● “cell line” 12 
● “PCR product” 13 
● “clone” 14 
● “off target” 15 
● “sgRNA” 16 
● “guide RNA” 17 
● … 18 

This is also visually shown in Supplementary Figure 1a. We also visualize how the number of new 19 
discussions are distributed over time in Supplementary Figure 1b. The forum collected the most 20 
discussions in 2014 with nearly 3000 discussion threads, and Year 2015, 2016 both had over 2000 21 
discussions. Here one discussion corresponds to one email. The total number of discussions is 12231.   22 
 23 
 24 

5. Fine-tuning of Llama3-8B-based Models 25 
 26 
We utilized the Llama3-8B-Instruct model, an 8-billion-parameter model designed to follow instructions59.  27 
This model served as the baseline for our fine-tuning experiments. It is capable of general-purpose language 28 
understanding but lacks the specific domain expertise required for detailed gene-editing tasks. 29 
 30 
Llama3-8B-Instruct model detail: The Llama3-8B-Instruct model is one of the versions in the Llama (Large 31 
Language Model Meta AI) family. The Llama3 family features pretrained and instruction-fine-tuned language 32 
models with 8 billion and 70 billion parameters. In this study, we choose the Llama-8B-Instruct as the base 33 
model for finetuning. More about Llama-8B-Instruct is as follows 34 

● Parameter size directly influences the model's capacity to learn and generalize, with larger models 35 
generally having greater flexibility but at the cost of computational requirements. The 8B variant 36 
strikes a balance between performance and computational efficiency, making it suitable for use 37 
cases where latency and resource constraints are important. 38 

● Llama-3B-Instruct is an instruct variant of the Llama models, fine-tuned specifically to follow human 39 
instructions. This makes it better at tasks like answering questions, summarizing text, completing 40 
tasks based on prompts, and other user-specific instructions. Fine-tuning procedure over Llama-3B-41 
Instruct (which is similar to ChatGPT fine-tuning) helps it align more closely with human expectations 42 
and deliver coherent, contextually aware responses to various prompts. 43 

● Compared to the pretrained model Llama3-8B, the Llama3-8B-Instruct model has improved abilities 44 
in following instructions, reasoning and coding59. However, it cannot handle gene-editing tasks well. 45 

● The LLama3-8B-Instruct model is open-sourced and is downloaded from the HuggingFace. The 46 
training pipeline follows LLama-Factory. LLama-Factory is a unified framework that integrates a suite 47 
of cutting-edge efficient training methods and provides a solution for flexibly customizing the fine-48 
tuning of 100+ LLMs without the need for coding through the built-in web.  49 

 50 
Our fine-tuning process involved two following approaches, and the algorithmic details is deferred to part 7: 51 

● Full Parameter Fine-tuning: All model parameters (8 billion) adjusted based on the curated 52 
FinalQA dataset. The training precision is float32 (FP32) which occupies 32 bits in computer 53 
memory. 54 

● QLoRA-based Fine-tuning: QLoRA combines Low-Rank Adaptation, or LoRA, and quantization for 55 
the fine-tuning process. LoRA freezes the pre-trained model weights and injects trainable rank 56 
decomposition matrices into each layer of the Transformer architecture, reducing the number of 57 
trainable parameters. Quantization improves over LoRA by quantizing the transformer model to 4-bit 58 
precision.The number of trainable parameters for QLoRA is 3.4 million. 59 

https://llama.meta.com/llama3/
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://github.com/hiyouga/LLaMA-Factory
https://arxiv.org/pdf/2106.09685
https://arxiv.org/pdf/2305.14314
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 1 
 2 
Training command: For QLora training, we apply the command  3 
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml.  4 
For Full training, we apply the command  5 
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run \ 6 
--nproc_per_node $NPROC_PER_NODE --nnodes 1 --standalone \ 7 
src/train.py full_fine_tunning/single_node.yaml 8 
In the commands, CUDA_VISIBLE_DEVICES specifies how many GPUs to use within a compute node, and 9 
the python and yaml files can be found in LLama-Factory Github. 10 
 11 
Detailed parameters and configurations used are: 12 
 13 

Hyper-parameters Full Fine-Tuning QLoRA Fine-Tuning  

Learning Rate 5e-6 1e-4 

Fine-tuning Type  Full Lora 

Quantization Bit NA 4 bits 

Per_device_train_batch_size 16 16 

Gradient_accumulation_steps 8 8 

Training_epochs 6 15 

Lr_scheduler_type cosine cosine 

Warmup_steps 0.05 0.05 

Distributed Training Deepspeed  NA (Trained on a single GPU) 

Optimizer adamw_torch adamw_torch 

Dataset FinalQA FinalQA 

 14 
Table. Training details for our instruction tuning experiments. Both Full Fine-Tuning model and QLoRA-15 
Tuning model are trained based upon LLama3-8B-Instruct model with Data FinalQA. The QLoRA Fine-tuning 16 
model costs a single A100 GPU with 1hr, while the Full Fine-tuning model is trained on 4 A100 GPUs for 17 
5hrs. Each GPU has memory of 80G. 18 
 19 
Choice of epoch number: During training, we varied the number of training epochs and found that 20 
finetuning >15 epochs does not help. In particular, full-parameter fine-tuning for 20 epochs did not improve 21 
the performance in gene-editing questions compared to CRISPR-Llama3 trained with 6 epochs. We tested it 22 
for multiple-choice questions in the FinalQA dataset, and it attained a score of 90% that was only 23 
comparable to CRISPR-Llama3 (91%). What’s more important is that fine-tuning for >15 epochs actually 24 
degrades the model’s performance on general questions, due to over-optimization/overfitting to the small 25 
dataset used for finetuning.  26 
 27 
Our choice of epoch number and observation of overfitting is consistent with common practice in LLM 28 
research. In general LLM research, while the base model is often pretrained on large amount of data entries 29 
using a large number of epochs, finetuning usually takes only a few epochs (2-15 epochs). The reason is 30 
that finetuning a model on a small domain specialized dataset could easily cause overfitting and catastrophic 31 
forgetting. A model that is “over-finetuned” could appear to memorize the dataset used for finetuning but it 32 
cannot generalize the knowledge and even forget common senses learnt via pre-training. The LIMA paper70 33 
suggests that supervised fine-tuning (SFT) only requires a small demonstration dataset. In their setting, they 34 
finetuned llama with 15 epochs with 1000 curated (question, response) pairs and showed remarkable 35 
performances. The BERT paper71 finetuned its model using only 2-3 epochs, and the RoBERTa 36 
paper72finetuned its model using 10 epochs. 37 
 38 

https://llama.meta.com/llama3/
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6. Evaluation and Rubrics 1 
To evaluate the fine-tuned models, we compiled an independent testset comprising three sets of questions: 2 

1. Multi-choice Questions: 20 multiple-choice questions curated from two sources of online 3 
knowledge exams (https://worldscienceu.com/quizzes/2-3-test-crispr-knowledge and 4 
https://quizizz.com/admin/quiz/5e977345a5b8a8001fe3478e/crispr-quiz), designed to test the 5 
model's ability to distinguish correct from incorrect answers related to gene-editing, including both 6 
basic fact-checking and experimental design questions. 7 

2. Basic Knowledge QA: A set of 10 questions assessing the model's understanding of fundamental 8 
CRISPR knowledge, from the UC Berkeley Innovative Genomics Institute’s online CRISPR FAQ60. 9 

3. Real-world Problem Solving (STAR_QA): A curated set of 10 open-ended questions, published by 10 
the journal STAR Protocols61, reflecting real-world challenges encountered by scientists during 11 
CRISPR gene-editing experiments. 12 

 13 
For each multiple choice question, we generated 10 answers using the models and then the average scores 14 
of the questions were collected for scoring. The scoring followed a stringent metric: the model will get a score 15 
of 1.0 for the question only when the model was able to correctly answer all the keys, otherwise it will get a 16 
score of 0.0. Finally all scores were calculated to yield the average score of each model. For each question 17 
in “Basic Knowledge QA” and “Real-world Problem Solving”, we generated 2 independent answers using the 18 
3 models for all the open-ended questions, including the basic knowledge and the real-world problem-solving 19 
questions. We then asked three independent human experts in gene-editing to evaluate the answers to 20 
these questions. The scoring rubrics for open-ended questions by human evaluations are: Score of 1 if the 21 
response is mostly correct and useful. Score of 0.5 if the response has errors but still helpful. Score of 0 if 22 
the response is not correct at all and not useful. 23 
 24 
Fine-tuning evaluation findings: Evaluation results of the fine-tuned LLM can be found in Supp. Figure 1. 25 
The fine-tuned model outperforms the baseline un-finetuned model on simple multiple choice questions by a 26 
moderate 8% and on real-world research questions by ~20% (Supp. Figure 1c). The fine-tuned model’s 27 
improved performance on open-ended problem-solving questions showed that our instruction tuning 28 
improved the capability of the model for answering domain-specific questions for gene-editing. The fine-tuned 29 
model provided helpful, expert-like suggestions for questions like "What is a good negative control guide RNA for 30 
gene-editing?" and "When I perform CRISPR experiment, my cells keep dying after single-cell sorting. Any advice 31 
on how to troubleshoot these issues?" (Supp. Figure 2). These results highlight the benefit of using domain 32 
expert discussions to improve LLM performance on scientific problems. 33 
 34 

7. Detailed Methodology of LLM Fine-tuning 35 

Full Instruction Fine-tuning: Instruction fine-tuning involves training a large language model (LLM) to 36 
perform well on tasks where it follows user instructions. It’s a process where the model is fine-tuned on 37 
labeled datasets, where each input corresponds to a specific desired output. The goal is to align the model's 38 
behavior with the human expert’s intent. An LLM (e.g. Llama) is typically a neural network based on the 39 
transformer architecture66. Let the model be parameterized by 𝜃, and given an input question 𝑥, the model 40 
outputs a probability distribution 𝑃𝜃(𝑦|𝑥) over the possible outputs 𝑦. During instruction fine-tuning, the model 41 
is trained on pairs (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 is the question (+ context) in FinalQA and 𝑦𝑖 is the answer. The goal of 42 
instruction fine-tuning is to minimize the difference between the model's predicted output and the true output 43 
(ground truth) for a given instruction. The standard loss function used is the cross-entropy loss, which 44 
measures how well the predicted probability distribution 𝑃𝜃(𝑦𝑖 |𝑥𝑖 ) aligns with the actual distribution. The 45 
cross-entropy loss for a single instruction-output pair (𝑥𝑖 , 𝑦𝑖) is defined as:  46 

𝐿(𝜃; 𝑥𝑖 , 𝑦𝑖) = − ∑

𝑇

𝑡=1

𝑙𝑜𝑔 𝑃𝜃(𝑦𝑖,𝑡|𝑥𝑖, 𝑦𝑖,<𝑡) ,  47 

where 𝑦𝑖,𝑡 is the token at position 𝑡 in the output sequence 𝑦𝑖, 𝑇 is the length of the output 48 
sequence,𝑃𝜃(𝑦𝑖,𝑡|𝑥𝑖,𝑦𝑖,<𝑡

) is the probability assigned by the model to the token 𝑦𝑖,𝑡, conditioned on the input 𝑥𝑖 49 

and all previously generated tokens 𝑦𝑖,<𝑡. For the FinalQA dataset of instruction-output pairs {(𝑥𝑖 , 𝑦𝑖)}𝑁
𝑖=1

, the 50 

total loss is: 𝐿(𝜃) =
1

𝑁
∑𝑁

𝑖=1 𝐿(𝜃; 𝑥𝑖 , 𝑦𝑖). This loss function encourages the model to assign higher 51 

probabilities to correct outputs (i.e., 𝑦𝑖) for a given input instruction 𝑥𝑖.  52 
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To minimize the loss, we update the model parameters using gradient descent. The parameter update rule at 1 
step 𝑡 is given by: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝜃𝐿(𝜃𝑡), where the learning rate 𝜂 is a hyperparameter. In practice, it is 2 
common to use AdamW optimizer67 (a variant of gradient descent) in fine-tuning tasks. It adjusts the 3 
learning rate based on past gradients, making it more efficient for training large models.  4 

QLoRA Fine-tuning: We first explain LoRA68 technique then introducing quantization. LoRA (Low-Rank 5 
Adaptation) is a technique for fine-tuning large language models (LLMs) that reduces the number of trainable 6 
parameters, making fine-tuning more efficient. Instead of updating all the parameters of the LLM, LoRA 7 
introduces low-rank matrices to adapt pre-trained models, considerably reducing the computational and 8 
memory overhead. LoRA assumes that weight updates during fine-tuning lie in a low-rank subspace. Instead 9 
of directly updating the large weight matrices of the model, LoRA approximates these updates with low-rank 10 
matrices. The original large weight matrices are kept frozen, and only the small low-rank matrices are 11 
updated. 12 
 13 
Let 𝑊0 ∈ 𝑅𝑑×𝑘   represent a pre-trained weight matrix of the LLM, where 𝑑 is the input dimension and 𝑘 is the 14 
output dimension. In standard fine-tuning, we would update 𝑊0 directly, i.e., 𝑊 = 𝑊0 + 𝛥𝑊, where 𝛥𝑊 is the 15 
full-rank weight update matrix learned during fine-tuning. In LoRA fine-tuning, instead of learning the full-rank 16 
matrix 𝛥𝑊, one could decomposes it into two low-rank matrices: 𝛥𝑊 = 𝐴𝐵⊤, where: 𝐴 ∈ 𝑅𝑑×𝑟 , 𝐵 ∈ 𝑅𝑟×𝑘, 17 
where 𝑟 is much smaller compared to 𝑑 or 𝑘. This means that during fine-tuning, we are learning the 18 
matrices 𝐴 and 𝐵, both of which have much fewer parameters compared to 𝑊0. The updated weight matrix 19 
becomes: 𝑊 = 𝑊0 + 𝐴𝐵⊤. 20 

Loss Function. For LoRA fine-tuning, it also uses the cross-entropy loss. For an input 𝑥 and its 21 
corresponding label 𝑦, the trainable parameters are low-rank matrices 𝐴, 𝐵 with the loss 𝐿(𝐴, 𝐵; 𝑥, 𝑦) =22 
− ∑𝑇

𝑡=1 𝑙𝑜𝑔 𝑃𝜃(𝑦𝑡|𝑥, 𝑦<𝑡) . The difference is that instead of optimizing the full 𝑊, we are now optimizing the 23 
low-rank matrices 𝐴 and 𝐵. 24 

Gradient update. The goal is to minimize the loss with respect to 𝐴 and 𝐵. The gradient update for LoRA also 25 
follows the gradient descent mechanism (with 𝜂 being the learning rate): 26 

𝐴𝑡+1 = 𝐴𝑡 − 𝜂𝛻𝐴𝐿(𝐴𝑡 , 𝐵𝑡; 𝑥, 𝑦); 𝐵𝑡+1 = 𝐵𝑡 − 𝜂𝛻𝐵𝐿(𝐴𝑡 , 𝐵𝑡; 𝑥, 𝑦). 27 

Since 𝐴 and 𝐵 are much smaller than 𝑊0, the computational cost is considerably reduced. 28 

Quantization. QLoRA69 extends LoRA by applying quantization to the frozen pre-trained weights in order to 29 
further reduce memory usage. The model weights are quantized into lower-precision formats (e.g., 4-bit), 30 
which allows for loading much larger models into memory. At the same time, QLoRA retains LoRA’s low-rank 31 
adaptation for efficient fine-tuning. 32 

 33 

C. Gene-Editing-Bench testset and full evaluation procedures 34 
 35 

1. Gene-editing experiment planning evaluation 36 

To assess the capability of the LLM-planner in autonomously generating a list of subtasks based on user 37 
requests, we developed a gene-editing experiment planning test set comprising 50 typical user queries 38 
spanning various gene-editing scenarios. Experts in the CRISPR field curated and labeled the ground truth 39 
subtask lists for each user request. 40 

We generated three independent batches of answers using CRISPR-GPT and baseline models. The 41 
generated subtask lists were compared with the expert-labeled ground truth subtask lists. For each request, 42 
we defined tasks present in both the generated and ground truth lists as true positives, tasks appearing 43 
only in the generated list as false positives, tasks present in the ground truth list but missing in the 44 
generated list as false negatives, and tasks absent from both lists as true negatives. 45 

To quantify performance, we calculated overall accuracy, precision, recall, and F1 scores using the following 46 
standard formulas: 47 

● Accuracy = Accuracy = (TP + TN) / (TP + TN + FP + FN) 48 
● Precision = Precision = TP / (TP + FP) 49 
● Recall = Recall = TP / (TP + FN) 50 
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● F1 Score = F1 Score = 2 × Precision × Recall / (Precision + Recall) 1 

Additionally, to evaluate whether the generated subtasks were presented in the correct order according to 2 
the user request, we utilized the Levenshtein distance (Ld) between the generated and ground truth 3 
sequences of subtasks. Each subtask was treated as a unique symbol, with costs incurred for additions, 4 
deletions, or substitutions (cost = 1). We report the average normalized Levenshtein distance (Ldn) as: 5 

● Ldn = Ld / (n × N) 6 

where n is the total number of subtasks per user request and N is the total number of user requests. 7 

Simultaneously, we generated three independent batches of answers using gpt-4o and gpt-3.5-turbo on the 8 
same set of user requests. Gene-editing experts reviewed and labeled each response as either correct or 9 
incorrect. The accuracy for each model was calculated as: 10 

● Accuracy = Number of Correct Responses / Total Number of User Requests 11 

2. Gene-editing delivery selection evaluation 12 

The choice of delivery is a critical step of designing a successful gene-editing experiment. There’s a saying 13 
in the field that “the challenges of gene-editing is delivery, delivery, delivery”. Even in a laboratory research 14 
setting, there are often many possible choices for delivering the CRISPR system into target cells of interest. 15 
If one searches online via Google or general LLMs, the most likely results would be a list of possible options, 16 
such as chemical transfection, liposome-based transfection, electroporation/ nucleofection, viral-based 17 
delivery, lipid nanoparticle delivery, etc. We propose that LLM agents are uniquely positioned to address the 18 
complexities given its large knowledge base and ability to perform logical reasoning in a defined domain like 19 
CRISPR gene-editing. In CRISPR-GPT, we designed the LLM agent with a series of expert instructions, and 20 
ability to use external tools such as performing web and literature search and ranking, allowing it to complete 21 
the task like a human expert. 22 
 23 
To evaluate the effectiveness of our delivery suggestion function, we created a delivery selection dataset, 24 
which includes 50 typical user queries regarding the selection of CRISPR delivery methods across various 25 
biological systems. For each query, we engaged multiple CRISPR experts to assess the applicability of six 26 
common CRISPR delivery methods: 27 

● a. Plasmid Transfection 28 
● b. Lentivirus/Retrovirus 29 
● c. RNP/mRNA Electroporation 30 
● d. RNP/mRNA Microinjection 31 
● e. mRNA LNP 32 
● f. AAV 33 

Each method was scored on a scale from 0 to 2, with 2 indicating the most suitable and commonly used 34 
method, 1 indicating potential usability under special conditions, and 0 suggesting infeasibility or rare use. 35 
Following the evaluation, experts convened to consolidate their assessments into a unified score sheet, 36 
which served as the ground truth for the test sets. 37 

Subsequently, three independent batches of responses were generated using CRISPR-GPT (with/without 38 
the "literature search" function), gpt-3.5-turbo, and gpt-4-turbo. Each model was prompted to propose a 39 
primary and a secondary delivery method for each query. Responses were then evaluated against the 40 
ground truth, with the primary delivery method assigned a weight of 2 and the secondary a weight of 1. 41 
Scores for all requests were summed and percentage correctness reported for each category of request. 42 

3. guideRNA design evaluation 43 

To evaluate the performance of the sgRNA design function, we constructed the gRNA design benchmark 44 
dataset, consisting of 50 typical user queries related to sgRNA design for CRISPR-mediated knockout, 45 
activation, or interference. To address these queries, we implemented four key functions — SELECT, 46 
BETWEEN, ORDERBY, and TOP — to process predesigned sgRNA tables and retrieve relevant sgRNA 47 
information for presentation to users. Experts in the CRISPR field manually curated a list of functions and 48 
their corresponding parameters for each user query, validating them to serve as the ground truth. 49 

We then prompted CRISPR-GPT to generate three independent batches of function lists and relevant 50 
parameters from user queries. The generated responses were compared to the ground-truth answers, and 51 
we calculated the accuracy of both the functions (i.e., correct function selection and correct order) and the 52 
parameters (i.e., correct parameters per function). 53 
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Simultaneously, we prompted gpt-4o and gpt-3.5-turbo to generate three independent batches of function 1 
lists and corresponding parameters. CRISPR experts reviewed these responses and labeled each function 2 
list and its corresponding parameters as either correct or incorrect, based on whether the proposed functions 3 
were relevant, in the correct order, and whether all relevant parameters were accurately captured. The 4 
accuracy of both the function (per request) and the parameters (per function) was then calculated. 5 

4. Gene-editing QA evaluation 6 

To assess the performance of the QA mode of CRISPR-GPT, we developed the Gene-editing QA 7 
benchmark dataset, which includes 138 questions covering a broad range of gene-editing topics. These 8 
topics encompass CRISPR basic knowledge, experimental troubleshooting, CRISPR applications, ethics, 9 
and safety. The full testset expands on the previous smaller set used for fine-tuning, and was sourced from 10 
real-world CRISPR inquiries compiled from public sources and human experts. All questions were then 11 
carefully filtered by human gene-editing experts to eliminate errors and inconsistencies. 12 

For the evaluation of QA mode, we selected 31 representative questions from the testset and prompted 13 
CRISPR-GPT, gpt-3.5-turbo, and gpt-4o to generate responses. The responses for each question were 14 
anonymized, and three CRISPR experts were asked to evaluate and score the answers across four key 15 
aspects: accuracy, reasoning, completeness, and conciseness (detailed rubrics are in C6 below). The scores 16 
from this fully blinded evaluation by experts were averaged to calculate the final performance scores. 17 

In the evaluation, human evaluators observe that general-purpose LLMs sometimes make factual errors and 18 
tend to provide long answers that are not all relevant to the questions (Figure 4f). For example, for the 19 
question “Why doesn't Cas9 cleave the original CRISPR sequence in the bacterial genome?”, GPT4o gave 20 
the correct answer (PAM) but also a factually wrong, non-relevant reason (crRNA mismatch), while our QA 21 
Mode gave a precise answer (Ext. Data Figure 2). In another example, for the question “What's the 22 
difference between Cas9 and Cas12a?” CRISPR-GPT gave a concise and correct answer. However, GPT4o 23 
gave a long list of differences but incorrectly claimed that Cas9’s multiplexing ability is an advantageous 24 
feature over Cas12a. In fact, Cas12 is the better system for multi-target gene editing (Ext. Data Figure 3). 25 
For a third example, let’s look at a question about solving cell growth issues in an experiment where a 26 
scientist performed Cas9 editing followed by single-cell sorting using MCF-7 cells. For this question, 27 
CRISPR-GPT QA Mode provided a fully accurate summary of potential reasons and actionable solutions. In 28 
contrast, GPT-4o’s responded with a long list of 9 itemized factors/options, but at least 2 of them are not 29 
applicable to MCF-7 cells (Ext. Data Figure 4). Overall, evaluation results confirmed that the multi-source 30 
QA Mode in CRISPR-GPT is better at answering advanced research questions about gene-editing. 31 
 32 

5. Human user experience evaluation 33 

To evaluate user observations of CRISPR-GPT across various tasks, we invited 8 independent CRISPR 34 
experts to test the web-based CRISPR-GPT agent. Each expert was asked to test two gene-editing requests 35 
using Meta mode and two gene-editing requests using Auto mode. 36 

For Meta mode, experts were tasked with designing two gene-editing requests and scoring their experience 37 
for each task across four aspects: accuracy, reasoning and action, completeness, and conciseness, using a 38 
scale of 1 (Poor) to 5 (Excellent) (details in Supp. Note C7 below). Experts also tested gpt-3.5-turbo and gpt-39 
4o using equivalent prompts and the same scoring criteria via OpenAI APIs (so blinded to the version of 40 
models). At the end, experts provided an overall score and comments. 41 

For Auto mode, experts tested two different gene-editing requests with CRISPR-GPT, gpt-3.5-turbo, and gpt-42 
4o, scoring each model using the same rubric. All scores were summarized and averaged.  43 

 44 

6. QA Mode evaluation rubrics 45 
Accuracy 46 

● 1 (Poor): The answer contains multiple factual errors or shows a misunderstanding of CRISPR 47 
technology. 48 

● 2 (Fair): The answer has some correct elements but also includes substantial inaccuracies. 49 
● 3 (Average): The answer is mostly accurate but may contain minor errors or oversights. 50 
● 4 (Good): The answer is accurate, with only negligible errors that do not impact the overall validity of 51 

the information provided. 52 
● 5 (Excellent): The answer is completely accurate, reflecting the current state of CRISPR knowledge. 53 

Reasoning 54 
● 1 (Poor): The reasoning behind the answer is flawed or nonexistent; the logic is unclear or incorrect. 55 
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● 2 (Fair): The answer provides a rationale, but it is weak and may not support the conclusion or 1 
design effectively. 2 

● 3 (Average): The answer's reasoning is solid for the most part, with some areas that could be better 3 
supported or explained. 4 

● 4 (Good): The answer provides strong reasoning with clear and logical support for all claims and 5 
suggestions made. 6 

● 5 (Excellent): The answer's reasoning is exceptional, providing insightful, well-supported 7 
explanations that enhance understanding of CRISPR knowledge. 8 

Completeness 9 
● 1 (Poor): The answer is incomplete and lacks critical information required to form a complete 10 

understanding. 11 
● 2 (Fair): The answer covers some necessary points but omits several important aspects that would 12 

be needed. 13 
● 3 (Average): The answer is fairly comprehensive but could be improved with additional details or 14 

coverage of more nuanced aspects. 15 
● 4 (Good): The answer is thorough, covering nearly all aspects required for a complete understanding 16 

and successful experimental setup. 17 
● 5 (Excellent): The answer is entirely comprehensive, leaving no question unanswered and providing 18 

a full suite of information needed. 19 
Conciseness 20 

● 1 (Poor): The answer is overly verbose and contains much irrelevant information, making it difficult to 21 
extract useful insights. 22 

● 2 (Fair): The answer is longer than necessary with some extraneous content but still delivers a fair 23 
amount of relevant information. 24 

● 3 (Average): The answer conveys the necessary information with some unnecessary detail but 25 
remains clear and understandable. 26 

● 4 (Good): The answer is concise, with well-organized content that is directly relevant to the question 27 
asked, without any unnecessary information. 28 

● 5 (Excellent): The answer is exceptionally concise, communicating the required information 29 
efficiently and effectively. 30 

 31 

7. User experience evaluation rubrics 32 
Accuracy 33 

● 1 (Poor): The answer contains multiple factual errors or shows a misunderstanding of CRISPR 34 
technology. 35 

● 2 (Fair): The answer has some correct elements but also includes substantial inaccuracies that could 36 
lead to flawed experimental design if followed. 37 

● 3 (Average): The answer is mostly accurate but may contain minor errors or oversights. 38 
● 4 (Good): The answer is accurate, with only negligible errors that do not impact the overall validity of 39 

the information provided. 40 
● 5 (Excellent): The answer is completely accurate, reflecting the current state of CRISPR research 41 

and methodologies. 42 
Reasoning and Action 43 

● 1 (Poor): The reasoning behind the answer is flawed or nonexistent, and the model fails to perform 44 
relevant actions. There is no logical connection between the reasoning and any actions attempted. 45 

● 2 (Fair): The reasoning is present but weak, with limited support for the conclusions or actions taken. 46 
The model attempts to perform actions, but they are either incomplete or not well-aligned with the 47 
problem at hand. 48 

● 3 (Average): The reasoning is mostly solid, though there are areas that could be better explained or 49 
supported. The model performs appropriate actions but lacks precision or optimal efficiency in its 50 
execution. 51 

● 4 (Good): The reasoning is clear and well-supported, providing logical justification for the actions 52 
taken. The model performs the actions effectively, demonstrating a good alignment between 53 
reasoning and execution. 54 

● 5 (Excellent): The reasoning is exceptional, offering deep insights and clear explanations. The model 55 
performs actions flawlessly, demonstrating innovation, precision, and effectiveness in executing the 56 
tasks based on the reasoning provided. 57 

●  58 
Completeness 59 

● 1 (Poor): The answer is incomplete and lacks critical information required to form a complete 60 
understanding. 61 
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● 2 (Fair): The answer covers some necessary points but omits several important aspects that would 1 
be needed for a thorough CRISPR design. 2 

● 3 (Average): The answer is fairly comprehensive but could be improved with additional details or 3 
coverage of more nuanced aspects of the design. 4 

● 4 (Good): The answer is thorough, covering nearly all aspects required for a complete understanding 5 
and successful experimental setup. 6 

● 5 (Excellent): The answer is entirely comprehensive, leaving no question unanswered and providing 7 
a full suite of information needed for CRISPR experimental design. 8 

Conciseness 9 
● 1 (Poor): The answer is overly verbose and contains much irrelevant information, making it difficult to 10 

extract useful insights. 11 
● 2 (Fair): The answer is longer than necessary with some extraneous content but still delivers a fair 12 

amount of relevant information. 13 
● 3 (Average): The answer conveys the necessary information with some unnecessary detail but 14 

remains clear and understandable. 15 
● 4 (Good): The answer is concise, with well-organized content that is directly relevant to the question 16 

asked, without any unnecessary information. 17 
● 5 (Excellent): The answer is exceptionally concise, communicating the required information 18 

efficiently and effectively. 19 

  20 
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D. Limitations, safety and ethical consideration, dual-use study 1 
 2 
1. Limitations of current study 3 
Here we discuss several limitations with the LLM agent described in this work for gene-editing and related 4 
biological experiments. First, while CRISPR-GPT can effectively design individual components such as guide 5 
RNAs and primers, additional connection with latest advances in genome/protein foundation models, plasmid 6 
design tools, and other machine learning models, could enable design tasks beyond gene-editing, e.g. 7 
design of tailored therapeutic molecules like mRNAs. Second, the agent's performance may be limited in 8 
complex gene editing requests or rare biological cases that are not well-represented in its training data or 9 
knowledge base. Continual updating of CRISPR-GPT's domain knowledge, safeguards, and expanding its 10 
integrated tool sets will be important to address increasingly sophisticated applications. Third, the real-world 11 
validation of CRISPR-GPT, though promising, may not fully encompass the diversity and complexity of gene-12 
editing applications across different organisms or cell types. Further testing and refinement will improve its 13 
reliability across a wider range of experimental conditions. Overall, regular auditing and updating of the 14 
agent's modules in line with the latest scientific and regulatory developments will help to bring exciting 15 
applications and responsible uses of genome engineering technologies. 16 
 17 
2. Implications for agents towards broader categories of biological experiments 18 
The LLM agent in the current study is designed for a major, but specialized type of biological experiment, 19 
CRISPR gene-editing. While the current agent serves a niche area, the challenges and difficulties we 20 
observed, as well as the solution and approach we proposed, have the potential to transfer to other areas of 21 
biological experiments and research topics. 22 
 23 
First, the human-AI collaborative approach demonstrated in CRISPR-GPT, where the LLM agent works 24 
alongside researchers to design experiments, could also have far-reaching implications. The LLM was 25 
designed through mimicking aspects of the thought processes of human domain experts, while also 26 
leveraging “Chain-of-thought” prompting and “state machine / memory” architecture that are state-of-the-art 27 
advance in LLM engineering, thus CRISPR-GPT showcase that optimal solution may require the best of both 28 
science and AI worlds. By leveraging the strengths of both human expertise and artificial intelligence, this 29 
paradigm has the potential to accelerate discovery and innovation across various biological disciplines. 30 
Further integration with additional LLM agents such as those assisting researchers in hypothesis generation, 31 
data visualization, and even the interpretation of results, could ultimately lead to more efficient and effective 32 
research processes. 33 
 34 
Second, the modular architecture and task decomposition strategy employed in CRISPR-GPT could serve as 35 
a blueprint for developing LLM agents in other areas of biological research. Breaking down the experimental 36 
design process into discrete, manageable tasks and implementing them as interconnected state machines 37 
allows for a structured, systematic approach to problem-solving. This modular framework also facilitates the 38 
incorporation of new tools, datasets, and experimental techniques as they emerge, ensuring the agent 39 
remains up-to-date with the latest advancements in the field. 40 
 41 
Third, one key aspect of CRISPR-GPT that could be broadly applicable is the integration of domain-specific, 42 
curated knowledge and external tools into the LLM-based agent. By equipping the agent with curated 43 
biological databases, protocols, and computational tools tailored to a particular field of biology, researchers 44 
can leverage the reasoning capabilities of LLMs to navigate complex experimental design tasks across 45 
various domains. We expect this will apply to additional areas, such as protein engineering and directed 46 
evolution, metabolic pathway optimization, or high-throughput screening assays. 47 
 48 
However, the development of LLM agents for broader categories of biological experiments will also require 49 
addressing the limitations and challenges highlighted in the CRISPR-GPT study. These include the need for 50 
robust fact-checking and validation mechanisms to mitigate the risk of hallucinations, regular updates to the 51 
agent's knowledge base and ethical/safety modules, and the development of more advanced natural 52 
language processing capabilities to handle the complexity and diversity of biological terminology and 53 
concepts. As the field of AI continues to advance, the lessons learned from CRISPR-GPT will undoubtedly 54 
inform the design and implementation of LLM agents across a wide range of biological research areas. By 55 
embracing these insights and adapting them to the unique challenges of each domain, we can harness the 56 
power of language models to revolutionize the way we conduct scientific research, ultimately leading to 57 
groundbreaking discoveries and transformative applications in biology and beyond. 58 
 59 
3. Dual-use study for safety and ethical considerations 60 
Substantial concerns exist regarding the use of gene-editing methods: (1) Heritable human edits, there are  61 
ethical concerns and societal risks to edit human genome that could lead to heritable alterations to the 62 
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common genetic pool of the human species1; (2) Pathogen engineering, the use of gene-editing to 1 
engineer pathogenic organisms such as highly dangerous viruses is an important biosafety risk2. 2 
 3 
Our implementation of CRISPR-GPT agent have 2 layers of protection / prevention:  4 
Layer 1: keywords filtering during prompt / request. Specifically, for layer 1, a list of keywords are screened, 5 
as listed in Supplementary Material 1. 6 
Layer 2: addition of explicit warning and consenting step  7 
 8 
To assess the risks associated with inappropriate usage of CRISPR-GPT agent, we designed a set of 9 
experiment requests for biological targets of concern, covering the above areas. We submitted these 10 
requests as prompts to the agent. We then examine the output of CRISPR-GPT to determine how the agent 11 
may or may not proceed with these requests (Ext. Data Figure 3). 12 
 13 
4. Protection of user genome data privacy:  14 
A notable unique feature of biological experiment is the potential of involving human genome data with 15 
considerable privacy and societal implications. There is growing concern that online biological tools would 16 
exploit sequence information that could be identifiable. For this part, a set of guidelines should be followed, 17 
such as the Health Insurance Portability and Accountability Act (HIPAA) in the US. Thus, we set up a hard-18 
coded recognition of identifiable nucleic acid sequences at the core of CRISPR-GPT. Once recognized, 19 
under no circumstances would sequence information be passed to the LLM agent, blocking any possible 20 
leakage of user sequence data (Ext. Data Figure 3). 21 
 22 
5. Concluding note on ethical, safe usage of LLM agent for biological experiments  23 
Taking together our observations from tests, the results from the dual-use study, and the privacy 24 
considerations, we believe that our work demonstrates the importance of having a set of safety guardrails 25 
and privacy protection mechanisms for biological LLM agents. This is to ensure responsible and secure 26 
usage of these agents for designing biological experiments. Specifically, we have the following 27 
recommendations: 28 

1. Explicit rejection of requests through stringent, explicit logic, with back-end prompt engineering to 29 
avoid any risk from explicit or concealed requests 30 

2. Zero tolerance for the storage or transmission of user supplied sequence data to the underlying LLM, 31 
hard-coded to ensure that this is required regardless of the API or other types of interface being 32 
used. 33 

3. Implementation of real-time updates to continuously monitor new technology development and data, 34 
ethical risks, as well as guidelines from WHO, IGSC, and the community. 35 

4. Security measures such as the authentication mechanism we are using to avoid any potential attack, 36 
bypass, or modification to the underlying LLM agent. 37 

5. Policy awareness should also be part of the consideration when developing any LLM agent for 38 
biological experiments, in line with international and national governing body guidelines and 39 
regulations, such as the Global guidance framework for the responsible use of the life sciences: 40 
mitigating biorisks and governing dual-use research (WHO). 41 

 42 
The above dual-use study and examples were performed in a purely computational manner by researchers. 43 
None of the examples listed were implemented in actual experiments. We reiterate that, under no 44 
circumstances should any individual or organization attempt to perform gene-editing that could lead to 45 
heritable changes or germline cell alterations in humans, or perform genetic engineering of any dangerous 46 
pathogens. Specific list of pathogens are exemplified by the International Gene Synthesis Consortium 47 
(IGSC) in the IGSC’s Harmonized Screening Protocol “Regulated Pathogen Database”, which is assembled 48 
and curated by the IGSC to include data from all organisms on the US Select Agent and Toxin list 49 
(https://www.selectagents.gov/sat/list.htm), the Australia Group Common Control List 50 
(https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/controllists.html), and other 51 
national lists of regulated pathogens and toxins. 52 

https://www.who.int/publications/i/item/9789240056107
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