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Reinforcement Learning 

(picture from internet)

An RL agent learns interactively through the
feedbacks of an environment.



And in real-life applications as well…

• RL for robotics.
• RL for dialogue systems.
• RL for personalized medicine.
• RL for self-driving cars.
• RL for new material discovery.
• RL for sustainable energy.
• RL for feature-based dynamic pricing.
• RL for maximizing user satisfaction.
• RL for QoE optimization in networking
• …
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However, there are Challenges…

• No access to a simulator
• Every data point is costly.
• Legal, safety issues associated with exploration.
• Large / complex state-space, action space.
• Long horizon
• Limited adaptivity (cannot run too many iterations)
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Or alternatively, when offline data
are provided, we can consider 
learning in the offline mode! 



Offline Reinforcement Learning: doing policy 
optimization using historical data  

Offline Trajectory 
data !

Collected by 
running "

Find near optimal 
Policy #$∗

Task: design OPO 
methods

Key question we ask: how to design efficient 
algorithm to reduce sample complexity?



Overview of the results

1. Propose offline RL algorithm for tabular MDPs [YW21]:
• Under partial coverage assumption
• Nearly-tight complexity:

2.  Propose offline RL algorithm for linear MDPs [YDWW22]:
• Under the minimal eigenvalue condition
• Instance-dependent guarantee (via variance-aware 

pessimistic learning)
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Offline learning in finite-horizon time-
inhomogeneous MDPs

• Offline setting: batch data 
! = {(%34 , '34 , %3564 , (3(4))}, + = 1,… , .; 0 = 1,… , 1.

Assuming behavior policy %

max
&

$& ≔ &[Σ'()
* )(+', -')|-' ∼ 1', 2), … , 2*]

Objective:



Tabular setting

Discrete MDPs with finite states and actions



Linear MDP setting
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=Transition 
matrix 1" has 
rank d 3 is known, 

4" is not!

∃%, 3: ∀,, ., ,#, 1" ,# ,, . = <$ ,# 3 ,, . , <(9) ∈ ℝ% , 3(9,9) ∈ ℝ%

• Linear MDPs [YW20; JYWJ20] has low-rank structure, can generalize over 
infinite state action spaces;

• Relate to other models: e.g. low-rank MDPs [AKKS20; UZS22]
• Extensively studied in online setting, e.g. [DQC21; DJQ21]



Previous sample complexity results in offline learning

Sample Complexity Assumption Setting

DVR[YBW21] !"($!/&"'#) Uniform 
coverage Tabular

PEVI-ADV 
[XHWXB21;RZMJR21]

!"($!)*∗/'#) Single 
Concentrability Tabular

Model-free[SLWCC22]
!"($!)*∗/'#) Single 

Concentrability Tabular

PVI[JYW21] =>Σ"&'
( @)∗[||3(," , .")||*"#$] Compliance Linear MDP

Bellman-
Pessimism[XCJMA21]

(1 − $)!"&
' (#[||+(,, .)||$!"#]

Realizability+
Completeness

Linear MDP

PACLE[ZWB21] =Σ"&'
( [||@)∗3(," , .")||+"#$]

Bellman Restricted 
Closedness Linear MDP
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We will not deal with exploration in offline RL,
because we can’t: assumption needed

• Uniform data coverage:
• =, ≔ min",.",/"="

0
," , ." > 0, 

• ="
0 is the marginal state-action distribution.

• Uniform concentrability:
• I0 ≔ sup),"

%"% 1,1
%"
& 1,1 < ∞.

• Single concentrability:
• There exists P∗ s.t. ="

0
," , ." > 0 if ="

)∗
," , ." > 0. 

• What if no assumption is made about !?



We will not deal with exploration in offline RL,
because we can’t: assumption needed

• Uniform data coverage (Assumption 2.1):
• =, ≔ min",.",/"="

0
," , ." > 0, 

• ="
0 is the marginal state-action distribution.

• Uniform concentrability (Assumption 2.2):
• I0 ≔ sup),"

%"% 1,1
%"
& 1,1 < ∞.

• Single concentrability (Assumption 2.3):
• There exists P∗ s.t. ="

0
," , ." > 0 if ="

)∗
," , ." > 0.

• The single concentrability I∗ = max
.,/

%"%
∗(.,/)

%"
&(.,/) .

• What if no assumption is made about !?
• Might suffer constant suboptimality gap.

! ≈ #7
$ % &8

! ≈ #7'(∗
$

[Yin, Bai, Wang, 2021]

[Xie et al., 2021]



Our Algorithm



Recap: UCBVI in Online RL

UCBVI [Azar et al. 2017]
• For " = 0,… , ' − 1
• For ℎ = 1,… ,+
• Compute empirical estimate S1"

4;
• Value Iteration with Optimism:

• ST"4 ,, . =

min{V"+ S1"
4 SX"5'

4
+Γ"

4
, > − ℎ + 1},

• SX"4 , = max/ ST"
4
(,, .),

• P̂" , = argmax/ ST"
4
,, . .



UCBVI vs. LCBVI, Online RL vs. Offline RL

UCBVI [Azar et al. 2017]
• For " = 0,… , ' − 1
• For ℎ = 1,… ,+
• Compute empirical estimate S1"

4;
• Value Iteration with Optimism:

• ST"4 ,, . =

min{V"+ S1"
4 SX"5'

4
+Γ"

4
, > − ℎ + 1},

• SX"4 , = max/ ST"
4
(,, .),

• P̂" , = argmax/ ST"
4
,, . .

LCBVI ([Yin&Wang,21])
• For h= +,… , 1, use batch data
• Compute empirical estimate S1";
• Value Iteration with Pessimism:

• ST" ,, . = min{V"+ S1" SX"5' −
Γ" , > − ℎ + 1},
• SX" , = max/ ST"(,, .),
• P̂" , = argmax/ ST" ,, . .

The design of bonus Γa matters!



LCBVI-Bernstein: Adaptive Pessimistic Value 
Iteration, simple algorithm J

For h= 7,… , 1, use batch data
• Compute empirical estimate 92a;
• Value Iteration with Pessimism:
• 9:a +, - = min{)a+ 92a 9?ab) − Γa, 7 − ℎ + 1} + ,
• 9?a + = maxc 9:a(+, -),
• C1a + = argmaxc 9:a +, - .

Insert Γ" ," , ." ≈
Var'()",+"

7̂"589",$
:)",+"

+
(

:)",+"
if f.",/" ≥ 1, o.w. 

;(
' .



As a result: APVI/LCBVI-Bernstein gives intrinsic 
offline reinforcement learning bound 

0 ≤ -∗ − -%& ≤ */
'()

*
/
+:,-:

&'&
∗ 0', 2'

Var.;:,<: 6'/)
∗ + 8'

&'
0 0', 2'
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•Directly implication of the intrinsic offline RL bound:
•Under Uniform data coverage: reduces to !( !)

"#*
), near-

minimax optimal [Yin et al. 2021a]; 
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As a result: APVI/LCBVI-Bernstein gives intrinsic 
offline reinforcement learning bound 
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•Directly implication of the intrinsic offline RL bound:
•Under Uniform data coverage: reduces to !( !)

"#*
), near-

minimax optimal [Yin et al. 2021a]; 
• Single concentrability: reduces to ! !)$%∗

" , near-
minimax optimal [Xie et al. 2021b];
• Problem-dependent expression: $! ∑&'(! ℚ,∗

"*#*
+

$! !)
"*#*

, mirrors [Zanette and Brunskill, 2019].



A bit more on problem-dependent domain 

+, -
123

4 ℚ1∗
. * /6

+ +, 17
. * /6

• Intrinsic bound can be simplified to the following by denoting ℚ-∗ ≔
min.,0 &'(1<,=(&-23∗ + (-) ∶

• Deterministic systems: when ℚ'∗ = 0, it automatically yields faster 
convergence

• Partially deterministic (mixture) systems: , stage stochastic transitions 
and + − , stage deterministic transitions

9G(
7h

H I Ji
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> 9 max' ℚ'∗ /;&̅"



Everything in one figure…
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How to certify this is near-optimal (at 
instance level)?

•We also have 
•An instance-dependent lower bound (Theorem 

4.3);
•Assumption-Free RL (Theorem 5.1)
•…

In particular, we need to leverage the variance structure to create local 
hard instance for every transition 

2a
j +j +, - = 2a +j +, - +

k8(l9|l,c)(m8:;
∗

l8:; no<[m8:;
∗

])

p9q=,>9mcr<=,>(m8:;
∗

)



What give rise to instance-dependent 
structure?

Leveraging Extended Value Difference Lemma

s∗ − s>) ≤ u

"&'

(
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What give rise to instance-dependent 
structure?

Leveraging Extended Value Difference Lemma
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Leveraging Empirical Bernstein inequality
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What give rise to instance-dependent 
structure?

Leveraging Extended Value Difference Lemma

s∗ − s>) ≤ u

"&'

(
@)∗ v" ," , ." −u

"&'

(
@>) v" ," , ."

Leveraging Empirical Bernstein inequality

v"(," , .") ≾
X.V ?@(V̂ + SX"5')

f.",/"

Converting sample-level quantities to population quantities
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Going beyond Tabular setting

•Well… there are works study linear MDPs
• Pessimistic Value Iteration [JYW21]
• Bellman-consistent Pessimism [XCJMA21]
• Pessimistic Actor-Critic [ZWB21]
•…

•But they are not tight in general (no matching 
bounds)

Is tighter instance-dependent bounds possible? 



From the technical end

• Improvement could be challenging, since all previous analysis rely on 
the self-nomalized Hoeffding’s bound technique
• Has been exploited extensively since the online analysis [JYWJ20]



From the technical end

• Improvement could be challenging, since all previous analysis rely on 
the self-nomalized Hoeffding’s bound technique
• Has been exploited extensively since the online analysis [JYWJ20]

Good news

• [ZGS21] introduced the self-nomalized Bernstein’s bound technique 
to obtain the near-optimal regret for linear mixture MDPs
• Has been successfully applied to the linear MDP OPE problem 

[MWZG21]



Also, what is missing?
• Previous algorithms consider least-square value iteration 

objective

• The “default” choice for linear-regression-type problems 



Also, what is missing?
• Previous algorithms consider least-square value iteration 

objective

• The “default” choice for linear-regression-type problems 

• However, RL is more than that… 

• RL is heterogeneous in nature as different (,, .)
corresponds to different distributions 1(9 |,, .)

• Intuitively, causes samples with low variance in transitions 
more informative than others



Also, what is missing?

Modification: better to reweight the LSVI objective 
according to their (estimated) uncertainties



Also, what is missing?

Modification: better to reweight the LSVI objective 
according to their (estimated) uncertainties

LSVI

Weighted LSVI



Variance-Aware Pessimistic Value Iteration 
[YDWW22]



Variance-Aware Pessimistic Value Iteration 
(VAPVI) 

Our result for linear MDP

Under minimal eigenvalue condition yzf"{,A:(@0," 3 ,, . 3 ,, . $ ≔ | > 0)



Variance-Aware Pessimistic Value Iteration 
(VAPVI) 

In addition, the output policy P̂ can compete with any policy! 

Our result for linear MDP

Under minimal eigenvalue condition yzf"{,A:(@0," 3 ,, . 3 ,, . $ ≔ | > 0)



Comparison with previous results

Bellman-consistent 
(linear MDP result) 
[Xie et al. 2021]

Pessimistic value iteration 
[Jin et al. 2021] 

=>Σ"&'
(

@)∗[||3(," , .")||+"#$]

(1 − 7)=>&
$ 9?∗[||<(=, >)||@&'(]

=Σ"&'
(

@)∗[||3(," , .")||*"#$]

Variance-aware 
pessimism (ours)

≈ =

>B to }9",$∗B

Σ) ≈ Σ*+,- + ,)* , .)* + ,)* , .)*
. + AB

Λ) ≈ Σ*+,- + ,)* , .)* + ,)* , .)*
./E/$%#∗0 + AB



What’s more

• Preserves instance-dependent features

• The guarantee can be further improved if non-negative feature is 
given (- ≥ 0)

• Improvement is strict when reduce to tabular setting!

• Self-normalized Bernstein inequality is the key for improvement!

e.g. when the instance has deterministic 
system, ensures faster convergence



Summary

• For both tabular and linear MDP setting, we provide get tighter
instance-dependent bounds
• For the tabular case, it subsumes previous worst-case bounds
• For the linear MDP case, can incorporate variance structure and improve 

over the previous results 

• Future Directions
• Weaken the minimal eigenvalue assumption for linear MDPs
• Extending to more general function approximation setting (e.g. differentiable 

function classes)



Summary
• Based on

• Towards Instance-Optimal Offline Reinforcement Learning
with Pessimism [Yin Ming&Wang Yu-Xiang, NeurIPS21]

• Near-optimal Offline Reinforcement Learning with Linear 
Representation: Leveraging Variance Information with 
Pessimism [Yin Ming, Duan Yaqi, Wang Mengdi, Wang Yu-
Xiang, ICLR22]



Thank you!


