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Reinforcement Learning

AGENT ENVIRONMENT
-State s €S

- Take action a € A

/’\

- Getreward T
-New state s’ € S

(picture from internet)

An RL agent learns interactively through the
feedbacks of an environment.



And in real-life applications as well...

* RL for robotics.

* RL for dialogue systems.

* RL for personalized medicine.

* RL for self-driving cars.

* RL for new material discovery.

* RL for sustainable energy.

 RL for feature-based dynamic pricing.
* RL for maximizing user satisfaction.

* RL for QoE optimization in networking



However, there are Challenges...

* No access to a simulator

* Every data point is costly.

* Legal, safety issues associated with exploration.

* Large / complex state-space, action space.

* Long horizon

* Limited adaptivity (cannot run too many iterations)

Or alternatively, when offline data
are provided, we can consider
learning in the offline mode!



Offline Reinforcement Learning: doing policy
optimization using historical data

T

~_
Offline Trajectory

data D
Collected by
running p

Task: design OPO f Find near optimal
methods L Policy 7t*

Key question we ask: how to design efficient
algorithm to reduce sample complexity?



Overview of the results

1. Propose offline RL algorithm for tabular MDPs [YW21]:
* Under partial coverage assumption
* Nearly-tight complexity:

Oé PIACHTS Pty Vi T10) 1,
S, a [ p—
SRR dy, (sn, an) n

h=1 Sh,Ap

2. Propose offline RL algorithm for linear MDPs [YDWW?22]:
* Under the minimal eigenvalue condition

* Instance-dependent guarantee (via variance-aware
pessimistic learning)
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Offline learning in finite-horizon time-
inhomogeneous MDPs

* Offline setting: bat'ch data . , :
D= {(St(l)' a_gl)»st(-?p’"t(l))}' Assuming behavior policy u
t=1,..,H;i=1,..,n AGENT ENVIRONMENT

-State s € S

- Take action a € A

/\

-Getreward T
-New state s’ € S

Objective:

max v® = E[Zf 1 (se, ap)|ap ~ mp, Py, ..., Pyl



Tabular setting

Discrete MDPs with finite states and actions



Linear MDP setting

(s,a) (s,a)
Transition _
matrix Py, has B
rank d ¢ is known,
Uy, is not!

u, p: Vs,a,s',Py(s'ls,a) =vI(sNp(s,a),v(-) € RY ¢(-,) € R?

e Linear MDPs [YW20; JYWJ20] has low-rank structure, can generalize over
infinite state action spaces;

* Relate to other models: e.g. low-rank MDPs [AKKS20; UZS22]
* Extensively studied in online setting, e.g. [DQC21; DJQ21]



Previous sample complexity results in offline learning

DVR[YBW21]

PEVI-ADV
[XHWXB21;RZMJR21]

Model-free[SLWCC22]

PVI[JYW21]

Bellman-
Pessimism[XCIMA21]

PACLE[ZWB21]

Sample Complexity

O(H?/dme?)
O(H3S5C*/£?)

O(H3SC*/&?)

dHE} 1 Epe 10 (Sh, @)l p1]

(1-y)*d

n

Vazi_y [Epd (s an)llg:1]

Ex[ll$ (s, @)lly1]
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Single
Concentrability

Single
Concentrability

Compliance

Realizability+
Completeness
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Tabular

Linear MDP
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We will not deal with exploration in offline RL,
because we can’t: assumption needed

* Uniform data coverage:
° dm = minh,Sh’ahdﬁ(Sh, ah) > 0,
» d} is the marginal state-action distribution.

* Uniform concentrability:
d;f(',')
d}Pl‘(.,.)

* Cy = Supgp

<o

* Single concentrability:
* There exists " s.t. d,‘f(sh, ay) > 0 if dﬁ* (sp,ap) > 0.

* What if no assumption is made about u?



We will not deal with exploration in offline RL,
because we can’t: assumption needed

* Uniform data coverage (Assumption 2.1):
° dm = minh,Sh’ahdﬁ(Sh, ah) > 0, H3
. dﬁ is the marginal state-action distribution. T In-d,

[Yin, Bai, Wang, 2021]
* Uniform concentrability (Assumption 2.2):

dr(.,")
e C, :=5su i H < 00,
U Pr,n d#(-,-)
* Single concentrability (Assumption 2.3): H3SC*
* There exists " s.t. dj, (sp, a) > 0 if d,’f* (sy, ap) > 0. &¥ n
. : e dp (5,0)
The single concentrability C* = rrsl,%x (s,a) [Xie et al., 2021]

* What if no assumption is made about u?
* Might suffer constant suboptimality gap.



Our Algorithm



Recap: UCBVI in Online RL

UCBVI [Azar et al. 2017]
*Fork=0,.. K—1
*Forh=1,.. H

* Compute empirical estimate 13,ff;

* Value Iteration with Optimism:

* Qr(s, @) =
min{rh+P,’l‘V,f+1+F,’f, H—h+ 1},

* Vi (s) = maxg Q5 (s, ),

+ fn(s) = argmax, 0 (s, @).



UCBVI vs. LCBVI, Online RL vs. Offline RL

UCBVI [Azar et al. 2017] LCBVI ([Yin&Wang,21])
*Fork=0,.. K—1 * Forh=H, ..., 1, use batch data
eForh=1,.. H * Compute empirical estimate ﬁh;

e Value Iteration with Pessimism:

* Compute empirical estimate I3,ff; R A~
* Qn(s,a) = min{ry+ P,V —

* Value Iteration with Optimism:

* Qn(s,a) = [, H—h+1},

h \°)» - P _ %
min{ry,+Py Vi, +Tf, H — h+ 13, . ‘fh((S)) = maxq 0 (5, cz), )
e PX(s) = max, 0F(s, ), 7, (s) = argmax,0, (s, a).

+ fn(s) = argmax, 0 (s, @).

The design of bonus I}, matters!



LCBVI-Bernstein: Adaptive Pessimistic Value
lteration, simple algorithm ©

Forh= H, ..., 1, use batch data
* Compute empirical estimate Ph;
* Value Iteration with Pessimism:
e 04,(s,a) = min{r,+P, V41 — T, H—h+ 1} +,
* Vn(s) = maXa@h(ﬁ; a),
* 71;,(s) = argmax,Qy(s, a).

Varﬁsh,ah(rh+Vh+1) H - CH
+ T Ngp ay = 1, o.w. Pl

Msp.ap Msp.ap

Insert Fh(Shr ah) ~ \/



As a result: APVI/LCBVI-Bernstein gives intrinsic
offline reinforcement learning bound

0< * ﬁ'< Ci z dn—*( ) Varpsh'ah(vﬁ-l-l-l_rh) 1+0( H3 )
=0 Tr s h S d;:(sh; ap) n ndm

h=1 sp,ap

* Directly implication of the intrinsic offline RL bound:

* Under Uniform data coverage: reduces to O(
minimax optimal [Yin et al. 2021a];



As a result: APVI/LCBVI-Bernstein gives intrinsic
offline reinforcement learning bound

0< * ﬁ'< Ci z dn—*( ) Varpsh'ah(vﬁ-l-l-l_rh) 1+0( H3 )
=0 Tr s h S d;‘f(Sh; ap) n ndm,

h=1 sp,ap

* Directly implication of the intrinsic offline RL bound:
H3
ndm

* Under Uniform data coverage: reduces to O(
minimax optimal [Yin et al. 2021a];

: . H3SC*
* Single concentrability: reduces to O ( ~ ), near-

), near-

minimax optimal [Xie et al. 2021b];



As a result: APVI/LCBVI-Bernstein gives intrinsic
offline reinforcement learning bound

0< * ﬁ'< Ci z dn—*( ) Varpsh'ah(vﬁ-l-l-l_rh) 1+0( H3 )
=0 Tr s h S dﬁ(sh; ap) n ndm,

h=1 sp,ap

* Directly implication of the intrinsic offline RL bound:
H3
ndm

* Under Uniform data coverage: reduces to O(
minimax optimal [Yin et al. 2021a];

: . H3SC*
* Single concentrability: reduces to O ( ~ ), near-

), near-

minimax optimal [Xie et al. 2021b];
* Problem-dependent expression: O h=1 n%h
“Um

_ 3
0] ( P; ), mirrors [Zanette and Brunskill, 2019].

n'm

_|_




A bit more on problem-dependent domain

* Intrinsic bound can be simplified to the following by denoting Q;, =

minVarp. (Vg + 1)
- ( H3
-0 ()

S,a
(H Q*
o\ 2, |amd
n-d
h=1

* Deterministic systems: when Q;, = 0, it automatically yields faster
convergence

. H3

0(

)

n-dny

e Partially deterministic (mixture) systems: t stage stochastic transitions
and H — t stage deterministic transitions

t - \/mi.?x Q;, /ndm



Everything in one figure...

Intrinsic Offline Learning Bound

H . Varpsh’ah (V;lk+1 + T'h) 1
2 2 & (Sn an) A“(Gpan) 70
h=1 sy,ap h\2ho Zh

Uniform Visitation Adaptive Domain
3 Single Concentrability
1] i < H3
~ h ~
ndn 5( H> (Z /,,.dm)w(n.dm)

n



How to certify this is near-optimal (at
instance level)?

*\We also have

* An instance-dependent lower bound (Theorem
4.3);

* Assumption-Free RL (Theorem 5.1)

In particular, we need to leverage the variance structure to create local
hard instance for every transition

P},l(SllS, (l) _ Ph(SllS, Cl) + Pr(s'|s,a)(Viyy1(Sh+1)—Ep[Vh41])

\/E'ns,a'varPg,a (Vi‘f+1)




What give rise to instance-dependent
structure?

Leveraging Extended Value Difference Lemma

vt <

Mm

7 [En(sh, ap)] — Z Ez[$n(sn, ap)]

h=1



What give rise to instance-dependent
structure?

Leveraging Extended Value Difference Lemma

vt <

uMm

7 [En(sh, ap)] — Z Ez[$n(sn, ap)]

Leveraging Empirical Bernstein inequality

Varp(# + Vpi1)

Sn(Sp,ap) 3 \/

Nsp,an



What give rise to instance-dependent
structure?

Leveraging Extended Value Difference Lemma

uMm

7 [En(sh, ap)] — 2 Ez[$n(sn, ap)]

Leveraging Empirical Bernstein inequality

Varp(# + Vpi1)

Sn(Sp,ap) 3 \/

Nsp,an

Converting sample-level quantities to population quantities
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Going beyond Tabular setting

* Well... there are works study linear MDPs
* Pessimistic Value Iteration [JYW21]
* Bellman-consistent Pessimism [XCIMA21]
* Pessimistic Actor-Critic [ZWB21]

* But they are not tight in general (no matching
bounds)

Is tighter instance-dependent bounds possible?



From the technical end

* Improvement could be challenging, since all previous analysis rely on
the self-nomalized Hoeffding’s bound technique

* Has been exploited extensively since the online analysis [JYWJ20]



From the technical end

* Improvement could be challenging, since all previous analysis rely on
the self-nomalized Hoeffding’s bound technique

* Has been exploited extensively since the online analysis [JYWJ20]

Good news

* [ZGS21] introduced the self-nomalized Bernstein’s bound technique
to obtain the near-optimal regret for linear mixture MDPs

* Has been successfully applied to the linear MDP OPE problem
[IMWZG21]



Also, what is missing?

* Previous algorithms consider least-square value iteration
objective

K
Wy, := argmin \|lwl|3 + Z [ (sf,af), w) —rF — Vh+1(shk+1)]
weRd k=1

* The “default” choice for linear-regression-type problems



Also, what is missing?

* Previous algorithms consider least-square value iteration
objective

K
Wy, := argmin \|lwl|3 + Z [ (sf,af), w) —rF — Vh+1(shk+1)]
weRd k=1

* The “default” choice for linear-regression-type problems
* However, RL is more than that...

* RLis heterogeneous in nature as different (s, a)
corresponds to different distributions P(- |s, a)

* Intuitively, causes samples with low variance in transitions
more informative than others



Also, what is missing?

Modification: better to reweight the LSVI objective
according to their (estimated) uncertainties



Also, what is missing?

Modification: better to reweight the LSVI objective
according to their (estimated) uncertainties

& 2
Wp, 1= argmin Mw||? + Z [ (sF,af),w) —rF — Vh+1(s,f+1)] LSVI
weR k=1

P 2
[(d)(sf'i, ay), w) —Th — Vh+1(3'ff+1)] Weighted LSV

b\h(sﬁ, aﬁ)

K
Wy, := argmin A||w||2+z
weR4 k=1



Variance-Aware Pessimistic Value Iteration
[YDWW?22]

Algorithm 1 Variance-Aware Pessimistic Value Iteration (VAPVI)

1: Input: Dataset D = {(s], a;,r,:)}thl D= {(sh,ah,f;)}thl Universal constant C.
2. Initialization: Set Vi 1(-) < 0.

3: forh=H,H—-1,...,1do

4:  Set T « Z —1 ¢(8h, ay, ) (33, a’h)T Al

Set By, + E k ZT , 6(37,,a3) - Vh+1(3h+1)2

Set 0y, + X7 " ZT 1 ¢(53,ap) - Vh+1(§sz+1)

Set [Varth+1] <¢( ) /Bh>[0 (H—h+1)2 [<¢( H_h>[o,H—h+1]]2

Set Uh( )2 — max{l VarpthH( )}

Set Aj, SK o (st,a]) o (s, af)' /52(sE,a7) + A -1,

10 Set @ A" (S 8 (57, af) - (7 + Vhn (5741) ) /3%(5F a])

11:  Set Tx(-,-) « CVd- (qb( -)TK_IqS(-, -))1/2 + 21{13;7‘/3 (Use I'} for the improved version)
12 Set Qn(-,-) = &(--) @n —Thl--)

13:  Set Qh( -) ¢ min {Qh( ) H—-h+ 1}

14 Set Ty (- | ) ¢ argmaxn, (Qn(-,-), mh(- |- ) w0 Vi() ¢ max, (Qn(, ), Tl | ) 4
15: end for
16: Output: {%\h}thl.




Variance-Aware Pessimistic Value Iteration
(VAPVI)

Our result for linear MDP

Under minimal eigenvalue condition minyApin (E, n[¢ (s, a)p(s,a)’] = k > 0)

v =T <O(Va: 3 B Vo6 TR o)) + H

K ¢(s§,2a’;i)-¢(sii

kNT ~
where Ny = ) 1 == An) AT 4 and O hides universal constants and the Polylog terms.

* k k
Vit1(spoap)




Variance-Aware Pessimistic Value Iteration
(VAPVI)

Our result for linear MDP

Under minimal eigenvalue condition minyApin (E, n[¢ (s, a)p(s,a)’] = k > 0)

v =T <O(Va: 3 B Vo6 TR o)) + H

K o(sh,ab)-osh.af)T

where A} = ) ., =L + A4 and O hides universal constants and the Polylog terms.

* k k
Vit1(spoap)

In addition, the output policy 7 can compete with any policy!



Comparison with previous results

s O a1 a g

~Vd Sh ~ SE (5K, ) (sk,ak) + 1
Bellman-consistent
(linear MDP result) (1-y)™*d
[Xie et al. 2021] n Cwlllets alllzz]

2 2
H~“ to O-Vflk+1

Variance-aware A ~ ZK (s, al)p(sk, af) JoZ +al

pessimism (ours) \/c—iZ;ILl[En*“ b (s, ah)”A;l]



What’s more

* Preserves instance-dependent features

e.g. when the instance has deterministic 2H*v/d
system, ensures faster convergence K

* The guarantee can be further improved if non-negative feature is
given (¢ = 0)

H
O(Va- 3" \Enlo( )T AL Exlo(-, )
h=1

* Improvement is strict when reduce to tabular setting!

* Self-normalized Bernstein inequality is the key for improvement!



Summary

* For both tabular and linear MDP setting, we provide get tighter
instance-dependent bounds
* For the tabular case, it subsumes previous worst-case bounds

* For the linear MDP case, can incorporate variance structure and improve
over the previous results

e Future Directions

* Weaken the minimal eigenvalue assumption for linear MDPs

* Extending to more general function approximation setting (e.g. differentiable
function classes)



Summary

* Based on

* Towards Instance-Optimal Offline Reinforcement Learning
with Pessimism [Yin Ming&Wang Yu-Xiang, NeurlPS21]

* Near-optimal Offline Reinforcement Learning with Linear
Representation: Leveraging Variance Information with
Pessimism [Yin Ming, Duan Yaqi, Wang Mengdi, Wang Yu-
Xiang, ICLR22]



Thank you!



