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Abstract
Developing theoretical guarantees on the sample complexity of offline RL methods is an important
step towards making data-hungry RL algorithms practically viable. Such results tend to hinge
on unrealistic assumptions about the data distribution – namely that it comprises a set of i.i.d.
trajectories collected by a single logging policy. We propose a relaxation of the i.i.d. setting that
allows logging policies to depend adaptively upon previous data. For tabular MDPs, we show
that minimax-optimal bounds on the sample complexity of offline policy evaluation (OPE) and
offline policy learning (OPL) can be recovered under this adaptive setting, and also derive instance-
dependent bounds. Finally, we conduct simulations to empirically analyze the behavior of these
estimators under adaptive and non-adaptive data. We find that, even while controlling for logging
policies, adaptive data can change the signed behavior of estimation error.
Keywords: RL, Offline RL, Off Policy Evaluation, Learning Theory

1. Introduction

Offline Reinforcement Learning (RL), which seeks to perform standard RL tasks using a pre-
existing dataset of interactions with an MDP, is a key frontier in the effort to make RL methods
more widely applicable. The ability to incorporate existing data into RL algorithms is crucial in
many promising application domains. In safety-critical areas, such as autonomous driving (Kiran
et al., 2020) and medicine (Raghu et al., 2017), online RL algorithms are effectively ruled out by
their dependence on randomized exploration. Even in lower-stakes applications, such as advertis-
ing (Cai et al., 2017), naively adopting online algorithms could mean throwing away vast reserves
of previously-collected data. Efficient offline algorithms leave room for practitioners to exercise
domain-specific control over the training process in a principled way.

Given a dataset, D, of interactions with an MDP M, two tasks that we may hope to achieve in
offline RL are Offline Policy Evaluation (Yin and Wang, 2020) and Offline Learning (Lange et al.,
2012). In Offline Policy Evaluation (OPE), we seek to estimate the value of a target policy ⇡ under
M. In Offline Learning (OL), the goal is to use D to find a good policy ⇡ 2 ⇧ where ⇧ is some
policy class.

The theoretical question of how and when it is possible to perform OPE and OL given a specific
dataset is the subject of much study (Lange et al., 2012; Raghu et al., 2018; Le et al.; Xie and
Jiang, 2021; Duan et al., 2020; Yin and Wang, 2020; Yin et al., 2021; Jin et al., 2021; Yin et al.,
2022; Qiao and Wang, 2023b; Zhang et al., 2022). Clearly, in order for D to be a rich enough
dataset to learn from, strong assumptions need to be made about how well it explores the MDP.
A standard assumption in offline RL is that D consists of i.i.d. trajectories distributed according
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to some logging policy µ, where µ has “good” exploratory properties. However, it is difficult to
justify the imposition of these assumptions on our data. How is a practitioner supposed to have run
a “good” logging policy µ without a priori knowledge of the very MDP they aim to understand? In
practice, the gathering of useful datasets is best done by running adaptive exploration algorithms
(e.g. Lambert et al. (2022)), perhaps with human supervision and/or intervention. Any such scheme
for data collection will necessarily be non-stationary and intradependent.

In this paper, we introduce the setting of Adaptive Offline RL (AORL), which allows datasets
to be collected with arbitrary statistical drift in the logging policy that governs each trajectory. We
show that existing techniques for policy evaluation and policy learning are efficient even in the
AORL setting. In addition to the motivating examples given above, here are some scenarios that are
covered by AORL but not by previous work:

1. The dataset D has been collected over a long period of time, during which unrecorded changes
have been made to the policy. An example of this might be the learning outcomes of students
on a changing online curriculum (Schmucker et al., 2021).

2. The dataset D was gathered by humans, and therefore influenced by a number of unobserved
factors and historical data. For example, a doctor prescribing medicine may make a determi-
nation based on her conversation with the patient and prior experience (Yu et al., 2019).

3. The dataset D has been gathered by a reward-free exploration algorithm (Jin et al., 2020;
Wang et al., 2020; Qiao and Wang, 2023a). This dataset will have excellent exploratory
properties, but is very intradependent.

1.1. Related Work

To the best of our knowledge, we are the first to consider OPE for reinforcement learning under
adaptive data. However, in the study of bandits and RL, Off-Policy Evaluation has been an area of
interest for more than a decade (Dudik et al., 2011; Jiang and Li, 2016; Wang et al., 2017; Thomas
and Brunskill, 2016; Yin and Wang, 2020; Yin et al., 2021). In RL, existing work adopts the setting
where D = {⌧i ⇠ µ} is a collection of i.i.d. trajectories. In this setting, bounds on the performance
of OPE or OL algorithms are given in terms of an exploration parameter, like:

dm = min
h,s,a:d⇡h(s,a)>0

dµ
h
(s, a). (1)

where dµ· (·, ·) is the marginal occupancy measure of µ. In the tabular, i.i.d. setting, OPE and OL
may be considered solved problems (Le et al.; Duan et al., 2020; Yin et al., 2021; Xie and Jiang,
2021). The multi-logger setting, where D = {⌧i ⇠ µi} for µi statically chosen, is a straightforward
generalization of the single-logger setting, and we refer to this problem as Non-Adaptive RL.

Especially relevant to our work is Yin et al. (2021), which derives the optimal rate for uni-
form OPE over the class of deterministic policies, and moreover establishes that uniform OPE in a
neighborhood of an empirically optimal policy implies an optimal algorithm for the policy learning
problem.

However, the practical value of bounds in these settings is still unclear. Xiao et al. (2022) point
out that it is difficult in practice to find a logging policy with a reasonable exploration parameter. In
what they consider a more realistic, “tabula rasa” case (where the logging policy is chosen without
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Figure 1: An illustration of the tape view of adaptive data collection. Each row (h, s, a) should be
thought to contain n i.i.d. samples from Ph+1(·|s, a). We can view the logger as being
provided with an adaptive subset of this table, defined by the red frontier above. The key
point is that for fixed nh,s,a, we may consider the transitions in the row (h, s, a) to be
i.i.d.

knowledge of the MDP), they show a sample complexity exponential in H and S to be necessary
in offline learning. Current results also fail to address the motivating application of learning from
existing, human-generated data, which we would not expect to be identically distributed, or even in-
dependent (as the data collected in trajectory j almost certainly influences future policies µj+1, ...).

While we do not know of any work that studies OPE with adaptively collected data, Jin et al.
(2021) study the problem of Offline Learning with Pessimistic Value Iteration under adaptive data
for linear MDPs. Their results do not cover OPE, and are loose when specialized to tabular MDPs.
Jin et al. (2022) cover the problem of learning from adaptive data for contextual bandits. The
generalization of such results to reinforcement learning is highly nontrivial, and the approach we
take to the problem is largely unrelated. For multiarmed bandits, Shin et al. (2019) study how
adaptive exploration schemes like optimism can lead to bias in estimated arm values. In their work,
they imagine a data-collection model whereby a table is populated with data before any experiments
begin. We make use of a similar model, generalized to the RL setting. This work also provides
inspiration for our numerical simulations.

1.2. Novel Techniques and Contributions

We explain how to extend the results of Yin et al. (2021) to generate (near) minimax optimal solu-
tions to uniform OPE and policy learning problems for the adaptive setting (Section 3). We derive
instance-dependent bounds for uniform and pointwise OPE in the adaptive setting. Depending on
the problem instance, these may give much faster rates than minimax bounds (Section 3). We
empirically investigate the bias of model-based estimators under loggers that perform optimistic
exploration (Section 4).

Our analysis introduces an equivalence between adaptive logging (Figure 2) and a “tape ma-
chine” model (Figure 1) which we believe has not been used in the RL setting. In particular, we
view the logging process as adaptively querying entries of a table of transitions that has been pre-
populated. The key point is that once we control the number of queries to each row, either by
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Figure 2: Non-adaptive regime (left) versus adaptive regime (right), depicted as a graphical model.
We see that, in the adaptive regime, each policy depends on all previous trajectories. This
induces dependence between the trajectories.

conditioning on them or covering all possibilities, we may treat the transitions within a row as iid
(Appendix B).

2. Preliminaries

2.1. Symbols, notation, and MDP basics.

Let �(X ) be the set of all probability distributions over X , for |X | < 1. We denote [H] :=
{1, ..., H}.

A Tabular, Finite-Horizon Markov Decision Process (MDP) is a tuple M = (S,A, r, P, d1, H),
where S is the discrete state space with S := |S|, while A is the discrete action space with A := |A|.
Its dynamics are governed by a non-stationary transition kernel, P = {Ph : S ⇥ A ! �(S)}H

h=1,
where Ph(s0|s, a) is the probability of transitioning to state s0 2 S after taking action a 2 A from
state s 2 S at time h 2 [H]. r is a collection of reward functions {rh : S ⇥ A ! [�1, 1]}H

h=1.
Finally, d1 2 �(S) is the initial state distribution of the MDP and H is the horizon.

A policy, ⇡, is a collection of maps, {⇡h : S ! �(A)}H
h=1. Running a policy on an MDP

will yield a trajectory ⌧i 2 (S ⇥ A ⇥ [�1, 1])H . Together, the policy and MDP induce a dis-
tribution over trajectories, as well as a Markov Chain with transitions notated as P ⇡

h
(s0|s) :=P

a
Ph(s0|s, a)⇡h(a|s).
In a set of trajectories {⌧i}ni=1, we define nh,s,a to be the number of visitations to (s, a) at

timestep h for all h, s, a.
v⇡ := E⇡[

P
H

i=1 ri|s1 ⇠ d1] is the value of the policy ⇡, where the expectation is over the ⇡-
induced distribution over trajectories. Furthermore, we define for any ⇡ the value-function V ⇡

h
(s) :=

E⇡[
P

H

i=h
ri|sh = s] and Q-function Q⇡

h
(s, a) := E⇡[

P
H

i=h
ri|sh = s, ah = a] for 1  h  H .

d⇡
h
(s, a) is defined to be the probability of (sh, ah) occurring at time step h in a trajectory

distributed according to policy ⇡.
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2.2. Motivation and Problem Setup

Motivated both by the negative result from Xiao et al. (2022) and the complex structures of real-
world data, we augment our formulation of the OPE problem to more realistically accommodate
intelligent choices of logging-policy. We consider this to be middle ground between the strong
assumptions on dm common to Duan et al. (2020); Yin et al. (2021), and the assumption of total
ignorance found in Xiao et al. (2022). To this end, this paper studies the following problem:

Definition 1 (Adaptive Offline Reinforcement Learning) An adaptively collected dataset D is a
dataset of the form D = {⌧i ⇠ µi}n

i=1, where µ1, ..., µn are chosen adaptively. That is, µi may
depend on the trajectories ⌧1, ...⌧i�1 (Figure 2). The possibly random rule that chooses each µi is
called an adaptive logging algorithm.

Adaptive Offline RL (AORL) refers to Offline RL where the dataset is assumed to have adaptively-
collected. In particular Adaptive Offline Policy Evaluation (AOPE) and Adaptive Offline Policy
Learning (AOPL) refer respectively to OPE and policy learning in the adaptive setting.

As opposed to vanilla Offline RL, the AORL problem formulation allows for the data to have
been collected according to a nearly arbitrary logging algorithm. When logging policies can be
tuned according to previous trajectories, there is scope for starting from “tabula rasa”, and iteratively
refining the logging policy as we learn about the MDP. In other words, the logger can leverage on-
line exploration techniques. Furthermore, by allowing arbitrary statistical dependence on previous
trajectories, AORL addresses the key scenario of learning from intradependent, human-influenced
datasets.

The issue of defining an exploration assumption for an adaptive logger is an interesting one. If
µ1, ...µn were statically chosen,

d̄m :=
1

n
min
h,s,a

nX

i=1

dµ
i

h
(s, a) > 0 (2)

would be a good assumption. However, the quantity d̄m as defined above is now a random variable.
We find it most natural to levy our assumption directly on the number of visitations to each

(h, s, a):

Assumption 2 (Exploration Assumption) For d̄m > 0, logging process E satisfies a (d̄m, �)-
exploration assumption if, with probability at least 1� �

nh,s,a > nd̄m

In the non-adaptive regime, nh,s,a � nd̄m/2 holds for Equation 2’s d̄m by a multiplicative
Chernoff bound. This implies that our results hold for the single-logger setting as a special case,
ensuring this work is a strict generalization of single-logger theory. Furthermore, this assumption
is generally satisfied by reward-free exploration algorithms (Jin et al., 2020; Qiao et al., 2022).
Assumptions on the exploratory property of the logger will not always be necessary. Results that
depend on Assumption 2 will state it as a hypothesis.
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2.3. TMIS estimation

We consider the TMIS (“Tabular Marginalized Importance Sampling”) estimator of v⇡ studied in
(Yin and Wang, 2020). This boils down to computing the value of a policy under the approximate
MDP defined by (S,A, P̂ , r̂, d̂1), with the estimators P̂ , r̂ and d̂1 defined below.

That is, if D = {⌧1, ..., ⌧n}, and ⌧i = (si1, a
i

1, r
i

1, ...s
i

H
, ai

H
, ri

H
), we use plug-in estimates

P̂h(s
0|s, a) =

nh,s,a,s0

nh,s,a

=
1

nh,s,a

X

i

1{sih=s,a
i
h=a,s

i
h+1=s0}, r̂h(s, a) =

1

nh,s,a

nX

k=1

rk
h
1{skh=s,a

k
h=a},

subject to these quantities being well-defined (nh,s,a 6= 0). If nh,s,a = 0, we can define them to
be 0. We also define d̂1 := d̂⇡1 := 1

n

P
n

i=1 esi1 to be the plug-in estimate of d1 computed from D
(where ej is the jth standard basis vector in RS). We let:

P̂ ⇡

h
(s0|s) =

X

a

⇡h(a|s)P̂h(s
0|s, a) r̂⇡

h
(s) =

X

a

⇡h(a|s)r̂h(s, a)

and iteratively compute d̂⇡
h
:= P̂ ⇡

h
d̂⇡
h�1 for h = 1, ...H . Finally, we form the estimate of value

function as

v̂⇡ =
HX

h=1

hd̂⇡
h
, r̂⇡

h
i.

2.4. Burning data

For any dataset D, we define D0 to be the dataset that keeps only the first N := minh,s,a nh,s,a

observations from each row of the tape machine. Let ŵ⇡ be the TMIS estimator that is run on the
burned dataset D0. In light of Assumption 2, this transformation essentially reduces our setting to a
generative model setting.

3. Theoretical Results

(Near)-Optimal Worst-case Bounds

We begin by observing that, as a consequence of the tape data model in Figure 1 (and Appendix
B), we are able to recover (Yin et al., 2021)’s near-optimal worst-case bound for OPE and Offline
learning.

Theorem 3 (Near optimal pointwise AOPE) Suppose D is an adaptively-collected dataset (Defi-
nition 1) and Assumption 2 is satisfied with (d̄m, �/2). Fix any policy ⇡ and let ŵ⇡ be formed with
the burned dataset D0. Then with probability at least 1� �

|v̂⇡ � v⇡| = Õ(
Hp
nd̄m

+
H2

p
SA

nd̄m
)

Proof Conditioned on N := minh,s,a nh,s,a, we have that, for any (h, s, a) 2 [H] ⇥ S ⇥ A,
{(s(i)

h+1)|s
(i)
h

= s, a(i)
h

= a, (i, h) 2 D0} is a mutually independent set of draws from the distri-
bution Ph(·|s, a). This is an immediate consequence of the tape-machine model (Appendix B).
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Furthermore, by assumption, we have that N > nd̄m with high probability. This observation im-
plies that the Martingale-based proof in Appendix E of Yin et al. (2021), which conditions on N , is
valid in the adaptive setting.

A union bound over deterministic policies above gives the optimal rate Õ(
q

H3S

nd̄m
).

Using the same observation of conditional independence given N , we are able to reproduce the
following result for policy learning.

Theorem 4 (Yin et al. (2021)-type near optimal offline learning result) Suppose D is an adaptively-
collected dataset satisfying Assumption 2 with parameters (d̄m, �/2). For any policy ⌫, let Ŵ ⌫(·)
be its value function in the empirical MDP defined by the burned dataset, D0. Let ⇡⇤ be an opti-
mal deterministic policy, ⇡̂⇤ := argmax⇡ŵ

⇡ and ⇡̂ be such that kŴ ⇡̂
⇤

t � Ŵ ⇡̂
t k1  ⇠ for some

0 < ⇠ 
p
H/S and for all t. Then, with probability at least 1� �, we have

v⇡
⇤ � v⇡̂ = Õ(

s
H3

d̄mn
+ ⇠)

Observe that we may generate ⇡̂ that satisfies Theorem 4’s assumptions by running a planning
algorithm like value iteration or policy iteration on the empirical MDP. Thu from a worst-case
perspective, offline policy learning is solved for the adaptive setting using the same proof techniques
as (Yin et al., 2021).

Instance-Dependent Upper Bounds

The minimax-optimal results from the previous section rely on the somewhat artificial trick of burn-
ing data to generate D0. In this section, we provide instance-dependent upper bounds that do not
require this trick, and may be much tighter for certain problem instances.

Theorem 5 (High-probability uniform bound on estimation error in AOPE) Suppose D is an
adaptively-collected dataset, and v̂⇡ is formed using this dataset. Then, with probability at least
1� �, the following holds for all deterministic policies ⇡:

|v̂⇡ � v⇡|  eO
 

HX

h=1

X

s,a

Hd⇡
h
(s, a)

s
S

nh,s,a

!
,

where nh,s,a is the number of occurrences of (sh, ah) in D and with the convention that 0
0 = 0.

This translates to the following worst-case bound, which underperforms the minimax-optimal
bound (over deterministic policies) implied by Yin et al. (2021) by a factor of

p
H . Note that this

result (and those that follow) use a (d̄m, �/2)-exploration assumption (Assumption 2).

Corollary 6 (High-probability uniform bound on estimation error in AOPE) Suppose that D,
v̂⇡ are as in Theorem 5. Further suppose that Assumption 2 is satisfied with parameters (d̄m,
�/2). Then with probability 1� �, we have that

sup
⇡

|v̂⇡ � v⇡|  eO
 
H2

s
S

nd̄m

!
.
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We also give a high-probability, instance-dependent, pointwise bound. In the pointwise case,
we are able to shave off a

p
S in the asymptotically dominant term.

Theorem 7 (Instance-dependent pointwise bound on estimation error in AOPE) Fix a policy
⇡. Suppose D is an adaptively collected dataset, and v̂⇡ is formed using this dataset. Further
suppose that Assumption 2 is satisfied with parameters (d̄m, �/2). Then with probability at least
1� �, we have:

|v̂⇡ � v⇡|  eO
✓
H3S

nd̄m

◆

+ eO
 

HX

h=1

X

s,a

d⇡
h
(s, a)

s
Vars0⇠Ph+1(·|s,a)[V

⇡

h+1(s
0)]

nh,s,a

!
.

The above translates into the following worst-case bound, which is suboptimal by a factor ofp
H .

Corollary 8 (Worst-case pointwise bound on estimation error in AOPE) Consider the same set-
ting as Theorem 7. Then with probability at least 1� �, we have:

|v̂⇡ � v⇡|  eO

0

@
s

H3

nd̄m
+

H3S

nd̄m

1

A .

The form of Theorems 5 and 7 reveal key features of a problem instance by decomposing es-
timation error along [H] ⇥ S ⇥ A. For example, Vars0⇠Ph+1(·|s,a)[V

⇡

h+1(s
0)] is a measure of how

“pivotal” a transition is – that is, our uncertainty in the effect of the outcome of (h, s, a) on our future
reward. d⇡

h
(s, a) is, of course, a measure of how likely the target policy is to visit (h, s, a). Thus,

these results tell us that it is important to design loggers that prioritize data-collection in regions of
the MDP that are highly visited by ⇡ or highly pivotal.

Though Corollary 8 does not recover a minimax-optimal bound on the estimation error, e⇤ :=
eO
⇣q

H2

nd̄m

⌘
, Theorem 7 may be much tighter than e⇤ for certain MDPs or certain policies. To take

an extreme case, Theorem 7 shows that error decreases as O( 1
n
) when the MDP is deterministic (a

relevant setting in the alignment of diffusion models (Uehara et al., 2024)).

3.1. Proof sketches

Due to space constraints, we give only high-level sketches of the proofs in this section. Full proofs
can be found in the appendices of the Arxiv version of this paper: https://arxiv.org/abs/
2306.14063

High-probability Results: 5, 6, 7, 8

All of these results arise from applying concentration inequalities to functions of our estimates,
P̂ , r̂, d̂0. However, the first two quantities are formed using a mutually dependent dataset. The
martingale structure of |v̂⇡�v⇡| used in Yin et al. (2021) is also lost in the adaptive setting, so there
is no straightforward way to apply concentration. However, the tape model tells us that for fixed
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Figure 3: For different ⇡, the blue curves show the average value of
p
n ⇥ (v̂⇡ � v⇡), where v̂⇡ is

computed on the first n  N trajectories of each of the 10, 000 adaptive datasets. The or-
ange curves are computed in the same way, except using the 10, 000 shadow datasets. On
the lefthand side, ⇡ is very suboptimal. On the righthand side, ⇡ is optimal. Confidence
intervals are 95% Gaussian.

h, s, a and nh,s,a, the error admits an expression amenable to concentration. Therefore, by using
a covering argument over {nh,s,a}, we are able to obtain our bounds while paying HSAn inside
the logarithm. Appendix B covers these details more carefully. Intuitively, the key observation is
that even though the logging algorithm can query points Ph(·|sh, ah) adaptively, the transitions we
observe are conditionally independent once we control for the number of samples.

The proof of Theorem 5 follows by a simulation lemma-type expansion of the error, which
leads to a dominant term of the form

P
h
Esh,ah⇠⇡,M[(P̂h+1(·|sh, ah) � Ph+1(·|sh, ah))T V̂ ⇡

h+1],
and smaller terms governed by r̂ and d̂1. The full proof is deferred to Appendix C.1.

Inspired by Azar et al. (2017), Theorem 7 is proved by applying concentration inequalities (with
the same covering trick as Theorem 5) to (P̂h+1 � Ph+1)V ⇡

h+1 and (P̂h+1 � Ph+1)(V̂ ⇡

h+1 � V ⇡

h+1)

separately, instead of (P̂h+1 � Ph+1)V̂ ⇡

h+1. In order to treat the dominant term, we use Bernstein’s
inequality. The residual term scales with 1

n
⌧ 1p

n
, which allows us to use cruder bounds when

treating it. To recover the worst-case bound in the corollary, we analyze the variance term with
the canonical equality

P
h
E⇡[Vars0⇠Ph(·|s,a)[V

⇡

h
(s0)]]  Var⇡[

P
h
rh]  H2. The full proof is

presented in Appendix D.

4. Numerical Experiments

4.1. Experimental Motivation and Design

Our theoretical results certify that the TMIS estimator achieves low error even with adaptively
logged data. However, they leave open interesting questions regarding the behavior of TMIS esti-
mation under adaptive data:

1. In multi-arm bandit literature, it has been established (Shin et al., 2019) that optimistic explo-
ration causes negative bias in sample means for suboptimal arms. This motivates us to ask:
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do datasets that are optimistically gathered lead to undervaluing sub-optimal policies in more
complex MDPs?

2. Our results hold for arbitrary adaptivity, which may be adversarially chosen. But is it possi-
ble that some forms of adaptivity are beneficial? For example, suppose an optimistic logger
collects a dataset Da adaptively, with logging policies µ1, ..., µn. Notice that Da has a dif-
ferent distribution than a dataset Db that consists of independent rollouts of µ1, ..., µn. Is Da

more favorable for estimating high-value policies because it was adaptively guided towards
high-value states?

We now investigate these questions empirically while validating our theoretical results. As our
adaptive logger, we use UCB-VI. We gather data using UCB-VI, and then roll out an independent
“Shadow” dataset using the same policies (Appendix G for details). As an optimistic algorithm,
UCB-VI is well-suited to testing Question 1. Furthermore, as UCB-VI steers the data-collection
procedure towards high-value states, it is conceivable that our estimator will benefit from the adap-
tivity for optimal ⇡. UCB-VI can “react” to unwanted outcomes in trajectory ⌧i, where the Shadow
dataset cannot.

4.2. Results

We first consider a highly sub-optimal target policy. The lefthand side of Figure 3 shows two
curves. Each curve plots the

p
n-scaled estimation error

p
n(v̂⇡ � v⇡) against n, averaged over

10, 000 runs of the data-collection process (10, 000 runs of UCB-VI and each run’s corresponding
shadow dataset). For each n and for each curve, this average is computed with respect to the first
n  N trajectories in each dataset. Theorem 6 tells us that these quantities will live in a band
around zero, but does not give us information on their sign. Plotting the 95% confidence interval
around each curve, there appears to be a distinction between the signed behaviors of the estimator
for adaptive data vs non-adaptive data, though both confidence intervals cover 0. This suggests that
there are measurable differences in the signed behavior of v̂⇡ when adaptive data is used, even if the
logging policies are the same. Figure 3 righthand side suggests this does not happen for high-value
policies.

On the whole, it seems that UCB-VI leads to negative bias in our estimates (especially for
suboptimal policies), but limitations on the computational resources available to us constrain us to
showing weak evidence of this conjecture. We also note that the magnitude of the error is indistin-
guishable for adaptive and non-adaptive data and that these simulations act as empirical validations
of the results in Section 3, by showing that

p
n|v̂⇡ � v⇡| does not explode.

5. Conclusion

In this paper, we derive upper bounds on the sample complexity of offline policy evaluation and
offline policy learning, where the data-generating process can drift adaptively over time. This is
facilitated by an argument from the “tape machine” model for data collection, which allows us to
port results from the iid setting into the adaptive setting. In order to understand the dependence
of estimation error on problem-specific quantities, we derive instance-dependent upper bounds and
conduct an empirical simulations. In this paper, we only treated tabular MDPs; extending these
methodologies to MDPs with continuous state spaces is left as important future work.
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Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, 2017.

Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and Defeng Guo. Real-
time bidding by reinforcement learning in display advertising. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, 2017.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
for episodic reinforcement learning. Advances in Neural Information Processing Systems, 30,
2017.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear func-
tion approximation. In International Conference on Machine Learning, 2020.

Miroslav Dudik, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In
International Conference on Machine Learning, 2011.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International Conference on Machine Learning, 2016.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, 2021.

Ying Jin, Zhimei Ren, Zhuoran Yang, and Zhaoran Wang. Policy learning ”without” overlap: Pes-
simism and generalized empirical bernstein’s inequality. Annals of Statistics, 2022.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yoga-
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